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Abstract

We extend the notion of “coupling with a foliation” from Poisson to Dirac structures and get the
corresponding generalization of the Vorobjev characterization of coupling Poisson structures [Yu.M.
Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, Lie algebroids and re-
lated topics in differential geometry, Banach Center Publ., Polish Acad. Sci. (Warsaw) 54 (2001) 249—
274; 1. Vaisman, Coupling Poisson and Jacobi structures, Int. J. Geom. Meth. Mod. Phys. 1 (5) (2004)
607-637]. We show that any Dirac structure is coupling with the fibers of a tubular neighborhood of
an embedded presymplectic leaf, give new proofs of the results of Dufour and Wade [J.-P. Dufour, A.
Wade, On the local structure of Dirac manifolds. arXiv:math.SG/0405257] on the transversal Poisson
structure, and compute the Vorobjev structure of the total space of a normal bundle of the leaf. Finally,
we use the coupling condition along a submanifold, instead of a foliation, in order to discuss subman-
ifolds of a Dirac manifold which have differentiable, induced Dirac structures. In particular, we get
an invariant that reminds the second fundamental form of a submanifold of a Riemannian manifold.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, the functions, manifolds, bundles, etc. are assumed to be differentiable
of classC®°. The Dirac structures were first defined by Courant and Weinggiand
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studied in Courant’s thes[d]. Dirac structures are important because they provide a uni-
fied view of Poisson and presymplectic structures, and generalize both. Later, Dorfman
[8] extended the notion of a Dirac structure to complexes over Lie algebras. On the other
hand, the bracket used by Courant was extended by Liu Et2jlto a notion of Courant
algebroid and the corresponding generalization of Dirac structures were introduced and
used in[13]. An extension of the original Courant bracket, which is not a Courant al-
gebroid bracket but includes the Jacobi structures in the scheme, was defined by Wade
[21].

For the reader’s convenience, we recall the general definitiofil2gf3] in a slightly
different form. A Courant algebroid is a vector bundle : C — M endowed with a non-
degenerate, pseudo-Euclidean megrie I ©2 C (I" denotes spaces of cross-sections and
©® denotes symmetric tensor product), a morphisnC — TM (theanchor) and a skew-
symmetric bracket,[|¢c : I'C x I'C — I'C such that:

() ple1, e2]c = [pe, pe2lrm,
(i) Ycyaazlles cae. esle = 31 cyen 2.3 &(lc1. c2le, ca))
(iii) (pc)glea, c2)} =g([c, calc + 0g(c, 1), c2) + glew, [c, 2] ¢ + dg(c, c2)), wherec, €
IC(a=1273)and,iff e C*M), af = (1/2), o' p(df) ('t denotes transposition
and the “musical morphisms” are defined like in Riemannian geometry), equivalently,

e ) = 5 () 1)

Further basic properties of Courant algebroids may be found, for examle, 9]

The most important Courant algebroids are the so-called doubles of Lie bialgebroids
[12,13] We describe them by means of the notion gbaga-Hermitian structure on a
pseudo-Euclidean bundl€(g) (e.g.[6]) that is, a bundle morphistf : C — C such that

F2=1d., g(Fe1, Fez) = —g(c1.c2) (¥ew2 € IC). 1.2)

A para-Hermitian vector bundl€( g, F) decomposes & = C. @ C_, where the compo-
nents are thef1)-eigenspaces @f, respectively, and the projections onto these components
are

Fy= %(Id. £ F). (1.3)

Moreover,C+ are maximal isotropic with respect tg the latter must beeusral (i.e., of
signature zero), and one has isomorphisisC.. — C% (the star denotes the dual bundle).
Furthermore, the bundle also has the non-degenerate 2-form

w(c1, c2) = glc1, Feo), (w(Fc1, Fez) = —w(c1, ¢2)), (1.4)

and the subbundleS. arew-Lagrangian. All these facts apply to para-Hermitian vector
spaces, which is the case where the bais a point.

A Courant algebroidd, g, p, [, 1¢) will be calledpara-Hermitian if it is endowed with
a para-Hermitian structurg such that the subbundl&%. are closed with respect to the
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bracket []c i.e.,VYec1, c2 € I'C, one has

F_[F+C1, F+CZ]C = 0, F+[F_Cl, F_CZ]C =0. (15)
Taking into account the expression Bf and the property2 = Id., we see that the two
conditions above are equivalent with the following single condition

[Fe1, Feale — F[Fea, c2]lc — Fle1, Fe2le + [c1, c2]lc = 0, (1.6)
which will be called thentegrability condition of F, because this is the integrability condi-
tion of a para-Hermitian structure on the tangent bundle of a manifold.

Since the subbundles.. areg-isotropic, the Courant algebroid axioms imply that the

vector bundle structure of a para-Hermitian Courant algebroid is that of a direct sum of two
dual Lie algebroids of anchogso F., p o F—. Moreover, the Lie algebroid brackets@f

together withF andg determine the Courant bracket ©f Indeed, from(1.3) and (1.5)it
follows that

Fi[c1, c2lc = [Fyc1, Freadle + Fy([Fyc1, F-c2lc + [F-c1, Fyc2]c),
F_[c1, c2lc = [F-c1, F—c2lc + F_([Fyc1, F—c2lc + [F-c1, Fyc2]c). a.7)

Then, by writing down axiom (iii) of the definition of a Courant algebroid for triples
(Fyc, Fyc1, F—_c2), (F—c2, F_c1, Fyc), instead of ¢, c1, ¢2), using(1.1)and conveniently
permuting ¢, c1, ¢2), we get the formulas

8(Fye, [Frea, Foc2]c) = g(F-c2, [Fyc, Frele) + (pFrc)(g(Fyc, F-c2))

_ %(pF+C)(g(F+C1, F—CZ))’
g(F_c,[Fyc1, F-c2]c) = —g(Fic1, [F-c, F_c2]c) + (pF-c2)(g(F—c, Fyc1))

+ S eFre, Fco)) (1.8)

These formulas define the brackets f1, F—c2] ¢, which, together witl{1.7), proves the
previous assertion.

Accordingly, one can see that the notion of a para-Hermitian Courant algebroid is the
same as that of the double of a Lie bialgebrdid].

An almost Dirac structure of the para-Hermitian Courant algebroitlis a maximal
g-isotropic subbundI& of C [13]. The isotropy property may be expressed by

g(Fyl1, F_Io) + g(F-l1, Fyl2) =0 Vi, 1o e T'L. (1.9

The algebraic properties of almost Dirac structures were discusggditutp. = Fi|;.
Then, kerp. = C+ N L, and we get the subbundles

Ly=impy~L/C:NL.
Itis easyto seethatkes(;) = (C.- N L) & (C_ N L), wherew is the 2-form(1.4). Hence,
the subbundle& . have induced 2-form®i defined by
Wb (Fily, Filp) = o= (F_11, F_l5) = w(l1, I3) = 2g(F_11, F,12)
= —2g(Fil1, F_1l), I1,loeTL. (1.10)
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It is possible to reconstruétfrom each of the pairs(s, »%). Namely, with(1.10)one
gets

L ={c/Fy(c) € Ly, g(F-(c).u) = 30k (Fy(c),u)Vu € Ly},
L={c/F_(c) € L, g(Fy(c),v) = =30l (F_(c),v)Vv e L_}. (1.11)

In particular, if L. = C4, L is determined by the 2-forrm,. on C, and it may be
called aralmost presymplectic structure. In this case, the first formuld..11)shows that.
may be identified with the graph of the mappingZ}, ob, : C+ - C_. If L_=C_,

L is determined by the 2-forrm_ on C_, it may be called amimost Poisson structure

and it is the graph of the mapping(1/2)t, o b,,_ : C- — C. The conditionL, = C

is equivalent with the surjectivity g, i.e., with kerp,. = C_ N L = {0}, and this latter
condition also characterizes the almost presymplectic case. Similarly, the almost Poisson
case is also characterized 6y N L = {0}.

Finally, a Dirac structure is an almost Dirac structure which is closed with respect to
the bracket []¢. Equivalently,L € C is a Dirac structure if it is maximal isotropic and
Vi, € T'L (a =1, 2, 3)one has

8([l1, l2)c, I3) = 0. (1.12)

From the axioms of the Courant algebroids it follows that ifs a Dirac structure then
(L, plz,[,]c) is a Lie algebroid.

In this paper, we will only be interested in the classical Courant ps@ hat isC =
T™M & T*M with p(X, &) = X,

g((X, ), (¥, B)) = %(ﬁ(X) +a(Y)), F(X, o) = (X, —a), (1.13)
therefore,
o((X, a), (Y, B)) = %(a(Y) — B(X)), (1.14)

and with the bracket

(X, @), (Y. B)] = ([X, Y], LxB — Lya + d(w((X, ), (¥, B))))
= ([X, Y],i(X)dB — i(Y) da + 5 d(B(X) — a(Y))). (1.15)

In the previous formulasy, Y are vector fields and, g are 1-forms on the differentiable
manifoldM, and the bracket of vector fields is the usual Lie bracket. Noticathat 7™M,
C_ = T*M and the Courant bracket reduces to zerd6i.

Then, a (almost) Dirac structure @M & T*M is called a (almost) Dirac structure on
the manifoldM. By the first formulg(1.11) an almost Dirac structuteof M is determined
by a generalized distributioh, € TM endowed with a 2-f0rm)i, namely:

L={Xa)/Xel &al, ZbaﬁX}- (1.16)
By a technical computation, it follows frorfl.16) that L is a Dirac structure iffL™ is

integrable and the formeLr is closed on the leaves @f* [4]. Accordingly, a Dirac struc-
ture onM is equivalent with a generalized foliation with presymplectic leaves where the
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presymplectic form depends differentiably of the leaves. If the leaves are symplectic we
have a Poisson structure, and if the leaves are the connected compondhigediave a
presymplectic structure (of a non-constant rankjon

Jacobi structures on a manifald may be seen as a particular case of Dirac structures
on M x R. Namely, a Jacobi structure a is equivalent with aPoisson homogeneous
structure on M x R (e.g.[7]). We recall that the Poisson structure defined by the bivector
field P is homogeneous if there exists a vector figlduch thatP + Lz P = 0. This is
equivalent with the fact that the Dirac structutéP) = {(tp6, 6)/6 € T*M} is such that
V(X,0) € L(P)one hasX + [Z, X], Lz6) € L(P). The latter property may be attributed
to a general Dirac structute thus, producing the notion of a genekalnogeneous Dirac
structure. A more sophisticated way to see Jacobi structures as Dirac was prop¢a& in

Furthermore, we will be interested in the case where the manioisl also endowed
with a regular foliationF, and our aim is to extend the notion fcoupling from Poisson
structures to Dirac structures. Poisson structures coupling with a fibration were studied by
Vorobjev [20] then, extended to foliated manifolds [b8]. They proved to be important
in the study of the geometry of a Poisson structure in the neighborhood of an embedded
symplectic leaf20]. In [9], Dufour and Wade study a Dirac structure in the neighborhood
of a presymplectic leaf and (in our terms) show that the structure is coupling with respect
to the fibers of a tubular neighborhood. In the present paper we will define the coupling
property of a Dirac structure with respect to an arbitrary foliation and extend Vorobjev’s
results. In particular, we will give geometric proofs of some of the resulf8]of

Since this paper is a continuation [d8], and in order to avoid repetition, we will use
the same notation for everything related with the foliation. In particular, we assume that
dimM = n,dimF = p, ¢ = n — p, and we denote b2*(M), V*(M) the spaces of differ-
ential forms and multivector fields dd. We will use anormal bundlig, i.e.,TM = H & F,
F=TF andT*M = H* @ F* for the dual bundlegi* = annF, F* = annH (ann de-
notes the annihilator space). We will also use the corresponding bigrading of differential
forms and multivector fields and the induced decomposition

d = dio + d6,l + 82’7]_ (117)

of the exterior differential.

2. Coupling Dirac structures

Let (M, F) be a foliated manifold as described at the end of Sectidfrom[18], we
recall that a bivector field® € V2(M) is F-almost coupling via the normal bundk if
P = Py, + Py ,, where the indices denote the bidegree, B¢ I' A2 H, P" € I' A2 F.
In this casep satisfies the Poisson condition, [P] = 0 iff the following four conditions
hold:

(LI:IP/)/P/)((L ﬂ) = d/V(ﬁP’Oh nP’ﬂ)» (Ljp/kp/)(av /3) = _}‘([ﬁP’as ﬁP’ﬁ])»
(LI:IP/)/PH)()H H/) = O’ (Lﬁp//vP/)()"v M) = d”\)(ﬁp//)\., ﬁP”[’L)ﬂ (21)

wherea, 8,y € 2LO(M), 1, u, v € 201(M).



922 1. Vaisman / Journal of Geometry and Physics 56 (2006) 917-938

Accordingly, the generalization of the almost coupling condition has to ask for a decom-
position of the Dirac structure into dircomponent and aH-component.

Definition 2.1. Let L € TM & T*M be a maximal isotropic subbundle. Denote
Ly=LN(H®H", Lr=LN(F®F*). (2.2)
Then, the almost Dirac structutds F-almost coupling via H if
L=Ly®Lp. (2.3)

Therefore, L is almost coupling iff £,0) € L is equivalent with X, «), (Y,1) € L,
whereZ=X+Y,0=a+ i, Xe€T'HY e I'F,ac 'H* » € 'F*. Another important
observation that follows from2.3) is that Ly, Lr are maximal isotropic inH &
H* F & F*, respectively, for the metrics induced lgyof (1.13) It follows easily that
the bivector fieldP is F-almost coupling viaH iff the subbundleL(P) satisfies con-
dition (2.3). If L = L(zr) is an almost presymplectic structure defined by a 2-form
7, almost coupling viad holds iff T = 7, 4 + 75 ,, where, again, indices denote the
bidegree.

In the almost coupling situation, the integrability condition of a maximally isotropic
subbundlel. € TM @ T*M extends condition§.1).

Proposition 2.1. The F-almost coupling, almost Dirac structure L € TM & T*M
is a Dirac structure iff V(X,a) € TLyV(Y,A) € I'Lp, the following four conditions
hold:

> {Xa(e2(X3)) + ea([X2, X3])} =0,

Cycl(1,2,3)
(Lyaz)(X1) + a1([Y. X2]) = M([X1. X2]), (LxA1)(Y2) + 22([X, Y1]) = O,
(Y1, Y2l i(Y1) d"h2 — i(Y2) d"A1 + d"(12(Y1))) € L. (2.4)

Proof. SinceL is isotropic, by(1.9)V(Z,, 6,) € L (a = 1, 2) we have
01(Z2) + 62(Z1) = 0. (2.5)

Then, sincé is involutive and using the decompositi(in17) the second expressi¢h. 15)
of the Courant bracket yields

[(X1. 1), (X2, @2)] = (pry[X1. X2], i(X1) daz — i(X2) day + d'(22(X1)))
+ (prp[ X1, X2, i(X1) d"a2 — i(X2) d’a1 + d’(e2(X1))),
2.6)

[(X, @), (V. )] = (pry[X, Y] i(X)or — i(Y) d"e) + (pre[X, Y], i(X)d2),  (2.7)

[(Y1, A1), (Y2, 22)] = (0, i(Y1) d'A2 — i(Y2) d'A1 + d'(12(Y1)))
+ ([Y1, Y2], i(Y1) d"A2 — i(Y2) d"11 + d"(2(Y1))), (2.8)
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where pr denotes natural projections and the term#fage H* and F @ F* components,
respectively. In the almost coupling situation, integrability means that these components
always belong td. g, L r, respectively.

The second term qR.8)yields the fourth conditiori2.4). Since d is exterior differen-
tiation along the leaves df, this condition is equivalent with the fact that consists of
Dirac structures on the leaves &f we will say thatL ¢ is aleaf-tangent Dirac structure
on (M, F).

By maximal isotropy, the # & H*)-component 0{2.8) belongs toL y iff V(X, @) €
I'Ly, the 1-form of the first term of the right-hand side(8f8) vanishes orX. The result
of this evaluation exactly is the third conditi¢®.4).

The terms of the decompositio(.7), (2.6)will be treated in a similar way, i.e., using
maximal isotropy and evaluations of exterior differentials. The computations show that the
condition provided by theR & F*)-component 0f2.7)is again the third conditio(2.4),
and the condition provided by théi(® H*)-component of2.7)is the second condition
(2.4). Then, the condition provided by th& @ F*)-component of2.6)is again the second
condition(2.4), and the condition provided by thé/(® H*)-component of2.6)is the first
condition(2.4). 0O

Remark 2.1. With a few computations, one can see that the Poisson cond{@oh)for
an almost coupling bivector field are exactly the Dirac conditig4) for the subbundle
L(P), and in the same order. If only the componéntis of the almost Poisson type, i.e.,
the graph of a bivector fieldl € I' A2 F, the last formulg2.4) means thafT must be a
leaf-tangent Poisson structure 818] and, by puttingV,, = izA, (a = 1, 2) in the third
formula(2.4), the latter becomes

(LxIT)(A1, 22) = 0. (2.9)

Now, on a foliated manifold ¥, F), a bivector fieldP is F-coupling if f p(annF) is a
normal bundle of the foliatiotF. In order to extend this notion, with any maximal isotropic
subbundle. € TM & T*M, we associate the possibly non-differentiable, generalized dis-
tribution of M defined by

H.(L,F)={Z € TyM/3a € annF, &(Z,a) € L} (x € M). (2.10)
Then, state the following definition.

Definition 2.2. The almost Dirac structuieis F-coupling if the distributionH = H(L, F)
is normal to the foliatiorfF at each poink € M.

Examples of coupling (integrable) Dirac structures will be shown in the next section. In
particular, we will see that, for any Dirac structur@nd any embedded presymplectic leaf
S of L, there exists a tubular neighborhobidf S such thatl is coupling with the tubular
fibers onU.

Proposition 2.2. [fthe subbundle L is F-couplingVx € M, L, is F-almost coupling at x via
H, = H.(L, F). Furthermore, the (H & H*)-component of Ly is the graph of a mapping
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bo, : Hy — Hj defined by some o, € A2(@nnFy), and the (F & F*)-component of L, is the
graph of amapping i : F} — Fy defined by some I, € A2Fy. Moreover, H = H(L, F)
is a differentiable, normal bundle of F such that L is F-almost coupling via H, and the
global cross-sections o € I' N2 (@nnF), IT € I' A2 F are differentiable.

Proof. The following considerations are at a fixed poird M, which we do not include
in the notation. WithH = H(L, F) as the normal space ¢f at x, take ,0) € L and
decompos& = X + Y, X € H,Y € F. By the definition off, 3« € H* such that¥, «) €
L, and we get a decomposition

(Z,2) =X, a) + (Y. 0 — a), (2.11)

where the terms belong th Then,VX’ € H with a corresponding covectas such that
(X', o) € L, (2.5)implies

6 — a)(X') = —/(¥) = 0.

Henced — o € F* and(2.11)implies the almost coupling propertg.3) at x.

Furthermore, if X, ), (X, @) € L, wherea, o/ € H*, we get (Qo’ — o) € L and the
isotropy ofL together with the coupling hypothesis imply= «. ThereforeyX e H, the
covectore € annF such that X, «) € L is unique and_ g is the graph of a morphisim,
o € A°H*. Notice also that the uniquenessoois equivalent with

L NnannF = {0}. (2.12)

On the other hand, the definition BfimpliesL N F C H, therefore, in the coupling case,
LN F ={0} and (see Sectiod) Ly must be of the almost Poisson type, whence the
existence of 1.

Finally, we will prove the differentiability of the distributiof (L, ). For this purpose,
let us consider the subspaces

H(L,F)={(Z,a) € L/a € annF} = L N [TM & (annF)] (2.13)
at each point oM. Then, kerp, |z, 5 = L NannF and
H(L,F) = p+(H(L, F)) ~ H(L, F)/(L N annF). (2.14)

In the coupling case, because(@f12) p. | 5 is an isomorphism and we are done if
we prove the differentiability off(L, ). In a neighborhood of a point, let {«“}, {1*}
and{(Z;, 6; = 6;,a“ + 6;,A")} be differentiable, local bases &f*, F* andL, respectively.
Then,

H(L, F) = {(£'Z:, £'6;) 0 = O}

(here and in the whole paper we use the Einstein summation convention), and we see that
H(L, F)is locally generated by fundamental solutions of a linear, homogeneous system of
equations with differentiable coefficients. But, if the rank of the latter is constant (and under
the coupling hypothesis the rankris- g), differentiable, fundamental solutions exist. Of
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course, the differentiability off also implies the differentiability of the 2-formand of the
bivector fieldr7. O

Hereatfter, in the coupling situation we will use or§(L, ) as the normal bundle and
shortly denote it byd. The coupling situation is interesting precisely because it provides a
canonical normal bundle of.

Proposition 2.3. An F-coupling, almost Dirac structure L € TM @ T*M is equivalent
with a triple (H, 0, IT), where H is a normal bundle of the foliation F, o € I' A% (annF)
and IT € I' A? F.

Proof. We have already derived the triple from the subburdI8uch a triple is called a
system ofgeometric data [20,9]. Conversely, if the geometric data are given, we reconstruct
L = Ly & L bydefiningL i as the graph df, andL ¢ as the graph of;. In other words,

we have

L={(X.psX)+ (gr,2)/X € HAe F*}. O (2.15)

Corollary 2.1. On (M, F), the almost Dirac structure L is F-coupling iff
L N (F & annF) = {0}. (2.16)
Proof. Condition(2.16)is animmediate consequence®f15) Conversely(2.16)implies
H N F = {0} andH ~ H.Onthe other hand, by looking at dimensiofzs16)also implies
LO(F@®annF)=TM & T*M, (2.17)

therefore,
L+ (TM & annF) = TM & T* M,
and from(2.13)we getdimH =dimH =¢. O

Remark 2.2. Inthe integrable case, formu|a.17)shows a new structure of para-Hermitian
Courant algebroid oM & T*M, the double of a Lie bialgebroid( F & annF).

Remark 2.3. An almost Poisson structuig( P) defined by the bivector fiel& is coupling
iff there exists a normal bundig of the foliationF that yieldsP = P, , + Py 5, whereP’

is non-degeneraf@0]. In the case of an almost presymplectic structufe) defined by a
2-formzt, H(L(7), F) is thet-orthogonal distribution of and the coupling condition holds
iff the former is a complementary distribution of the latter. Equivalerit{y,) is F-coupling
iff there exists a normal bundi# that yields a decomposition

T = Té’o + T&z, (218)

wheret” is non-degenerate.

Remark 2.4. One can also define the notion of Arcoupling Dirac structure in a dual way.
Namely, for any almost Dirac structuleC TM @ T*M of the foliated manifold ¥, F),
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we may define thgeneralized codistribution (a field of subspaces of the fibers Bf M
with a varying dimension)

Kf=K\L,F)={0eT:M/3Y € F,&(Y.0) € L,} (x € M). (2.19)

K* may not be differentiable, i.e., it may not have local generators defined by differentiable
1-forms. Then, it follows thak is F-coupling iff

T*M = (annF) @ K*. (2.20)

Indeed, by dualizing the proof &froposition 2.2we see that conditio(2.20)also obliges
L to be of the form(2.15) Notice also that, in the coupling case, the decompos{2a20)
is the dual offM = H & F for H given by(2.10)

The integrability conditions of a coupling Dirac structure may also be expressed by
means of the associated geometric data like in the Poissoiiats$8].

Proposition 2.4. An F-coupling almost Dirac structure L € TM & T*M of a foliated
manifold (M, F) is a Dirac structure iff its associated geometric data (H, o, IT) satisfy the
following conditions:

(i) I is a leaf-tangent Poisson structure on (M, F), i.e., its restriction to each leaf is a
Poisson structure of the leaf,
(i) d'o =0, equivalently, do(X1, X2, X3) = 0,VX1, X0, X3 € TH;
(i) for any projectable (to the space of leaves of F) vector fields X1, Xo € I'pr H (pr
denotes projectability) one has

pre[X1, Xo] = g (d’(o(X1, X2)));
(iv) for any projectable vector field X € I'pr H one has LxIT = 0.

Proof. Condition (i) is the equivalent of the fourth formua.4)if L » = L(IT) is the graph
of IT. In the coupling case, if we pat, = b, X, (@ = 1, 2, 3) in the first formulg2.4), we
get condition (ii). The similar replacement of the forms the second formulé2.4) puts
the latter into the form

(Lyo)(X1, X2) = —A([X1, X2]), VY =i, VA€ F*, VX1, Xo € TH. (2.21)

Since this condition is invariant by multiplication of the argumenbs any f € C*°(M), it
suffices to ask2.21)for projectable arguments. BWX, e I'yy Hiff [V, X] € I'F,VY € T'F
[15], and we see thgR.21)is equivalent with

(BrA)(o(X1, X2)) = —M([X1, X2]),
which exactly is condition (iii) of the proposition. Similarly, it suffices to use a pro-

jectable argumenk in the third formula(2.4). Then, the third formulg2.4) becomes
([X, g7A], LxA) € I'L(IT), which is equivalent with condition (iv). O

Remark 2.5. Conditions (i)—(iv) ofProposition 2.4re the same as Vorobjev’s conditions
[20,18] of the Poisson case, except for the fact that the 2-fermay degenerate. If9]
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these conditions were included by definition. In the presymplectic case, where the structure
is defined by the closed 2-formof (2.18)with a non-degenerate componefit condition

(i) means that” defines symplectic structures on the leavegpénd conditions (ii)—(iv)
become

do' =0,  d'(¢'(X1, X2)) =brr(pre[Xa, X2),  Lxt" =0 (2.22)
VX, X1, X5 € I'pr H. Itis easy to see that these conditions are equivalent with
d’tv” =0, d7 =0, d’v + 91" =0, dr” =0, (2.23)

which are the homogeneous componentsefd0.

3. Dirac structures near a presymplectic leaf

We continue to use the notation of the previous sections. A presymplectic leaf of a Dirac
structurel. of a differentiable manifold/ is an integral submanifold of the distributidn.
defined in Sectiord. In [9], it was proven that, in a tubular neighborhood of an embedded
presymplectic leaf, any Dirac structuteés coupling with respect to the fibers of the tubular
structure. This result, which extends the similar one in Poisson geoifi@éfydescribes
the geometry of a Dirac structure near an embedded presymplectic leaf. Below, we give an
invariant proof of this result.

Proposition 3.1. Ler L be a Dirac structure on the foliated manifold (M, F). Assume
that L has a presymplectic leaf S such that TsM = TS @ F|s. Then, there exists an open
neighborhood U of S in M such that L|y is coupling with respect to F N U.

Proof. We will refer to bidegrees defined by the decomposiie = 7S & F|y, where
we know thatl'S = L. Then, for allX € TS, there exists a covectare 7*S of bidegree
(1, 0) equal td’wix on7S, and(1.16)shows thatX, o) € L. The conclusion is that|s is
the presymplectic structure 8fand H(L, F)|s = TS, therefore L is F-coupling alongs.
By Corollary 2.1 this is equivalent with

[L+(F@®annF)]s =TsM & T{M, (3.1)

and, since its left hand side is differentiab(®,1) also holds on an open neighborhotd
ofS. O

Corollary 3.1 (Dufour—-Wad€9]). Assume that the Dirac structure L of a manifold M has
an embedded leaf S. Then, on a sufficiently small tubular neighborhood U of S, with the
foliation F defined by the fibers of the tubular structure, L may be put under the form (2.15)
where (H,o € I' A% (@nnF), IT € I" A F) is a triple of geometric data that satisfies the
integrability conditions () — —(iv) of Proposition 2.4, and I1 is a Poisson structure which
vanishes on S.

Remark 3.1 (Dufour—Wadd9]). The previous corollary implies the fact that all the presym-
plectic leaves of a Dirac structure have the same parity. Indeed, with the notation of the
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corollary, at a point nea$, L is a direct sum of a subspace of dimension dind a
subspace tangent to a symplectic leafbfwhich has an even dimension.

Following [9], we say thatlT is the transversal Poisson structure of the leafS. The
following proposition shows that the transversal structure is essentially unique.

Proposition 3.2 (Dufour—Wade[9]). The transverse Poisson structure of an embedded
presymplectic leaf of a Dirac structure is unique up to Poisson equivalence.

Proof. We get two transversal structurég, IT, if we use two tubular neighborhoods
Ui, Us. Theisotopy ofthe lattdd.0] yields a leaf-preserving diffeomorphisin: Uy — Ua,
which may be seen as the composition of maps in the flows of projectable vectotXfields
on Ui. But, (2.9) implies LxIT = 0 for all the projectable vector fields. Hence, by the
integrability condition (iv) ofProposition 2.4 @, 111 = I1> (after shrinking the tubular
neighborhoods if necessary).[]

In what follows we consider the Vorobjev—Poisson strucf@f®18]in the case of an
embedded, presymplectic lesibf a Dirac structurd..

From the general result on Lie algebroids given by Theorem 2[11df it follows that
the vector bundld | s has a well defined induced structure of a transitive Lie algebroid over
S with the anchor and bracket defined by

p(X,0) = X,
[(X1,61), (X2, 02)]s = ([X1, X2], L, 02 — L5,01 — d(02(X1))ls, (3.2)

where all the pairsX, 6) belong toL|s and (X, 8) are arbitrary extensions oX( 6) from
S to M. The existence of such extensions follows from the fact thit an embedded
submanifold, and the independence of the bra¢Bet) of the choice of the extensions
follows easily if the extensions are expressed via a local badisofl the axioms of a Lie
algebroid are used 1].

Accordingly, G = ker p is a bundle of Lie algebras such that

05GSLIsATS—0 (3.3)

is an exact sequence with projectignento S, while S is endowed with the presymplectic
(closed) 2-forme = k.

As in [20,18] each splittingy : TS — L|s produces geometric daté{(o, L) on the
total space of the dual bundi& with the foliation by fibers). Namely:

(i) H is the horizontal bundle of the dual of the connection define@ day the formula

Vxn=[y(X).nls, X elITS, nelG, (3.4)
(i) o isthe 2-form evaluated, ate G*, on horizontal liftsX, x> of X1, Xo € I'TS, by
07 (X1, A2) = wp(5) (X1, X2) — z2([¥(X2), v(X2)] — v[X1, X2]), (3.5)

(iii) L is the family of Lie—Poisson structures of the fibersf
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The only difference between this situation and that of Vorojp8j is that o may
degenerate. But, the arguments and computations of Vorobjev’s case, as descjii#&d in
are still valid, and they show that the tripl¢{{o, L) satisfies the integrability conditions
i)-iv) of Proposition 2.4Therefore, there exists a corresponding coupling Dirac structure
L(S, y) on the manifoldG*, and we call it anssociated Dirac structure of L along S.

Let vS be a normal bundle of the le&f(TsM = vS @ TS). Then, the reconstruction
formula(1.16)shows that

Lls = {(X, b X + 1)/ X € TS, » € v*S}, (3.6)
whereb,, X is the 1-form defined by

w(X,Z), ifZeTs,

3.7
0, if Z € v, S

bwX)(2) = {

and we have a splitting given by
Y(X) = (X, by X). (3.8)

On the other hand3.6) shows that we may identify the bundi&* with vS. Namely,
we haveG = v*S§ = annTs, and® € Hom(annT's, R) identifies withY € vS defined by
AY) = O() Vi € annTS. We will say that the Dirac structure associated withy the
splitting (3.8) is theassociated, normal Dirac structure L(S, vS).

We want to find a convenient local coordinate expressiofi(6f vS). For this purpose,
around the points dfand after the choice of the normal bundi we take local coordinates
(x*, y*), wherea (and similar indices, c¢) takes the values 1. ., codimsS andu (and similar
indicesv, w) takes the values,1.., dim S, such thafS is locally defined by the equations
y*=0and

ad d
TS = span{axulyb_o} , VS = span{aya|yb_0} , T*S = spar{dx”lyhzo},

V'S = sparfdy“| »_o}- (3.9

Then, Theorem 3.2 dB] tells us that the Dirac structufehas local bases of the form

0 d
Hy = (8)(” + Az(x, y)Ws OluU(X, Y) dxv) s

V= (B“b(x, y) 0 , dy® — A%x, y) dx”) , (3.10)
dyb
wherea,,, (x, 0) are the components of the 2-formand
Ab(x,0)=0, B%(x,0) = 0. (3.11)

Remark 3.2. As a matter of fact the proof given [8] holds to show that, for any maximal

isotropic subspacé € W @ W* whereW is an arbitrary vector space, there are bases of
the form

(L + AL £, ip?), (B f, g — A9LY), (3.12)
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where () is a basis ofL, (f,) is a basis of an arbitrary complementf, (\*) is the
dual basis of,) and “) is the dual basis off,).

It follows that the local basis of the Lie algebra bun@ex v*S given in(3.9) may be
seen as{’|»_o) and the local basis o(7S) is (Hu|,»_o). Using(3.11) which implies the
vanishing of the derivatives of the same functions with respecttm S, and the closedness
of the 2-formzr, we get for the brackets of the elements of these bases the expressions

dBab dA?
Ve, Vs = ( - VC) Vs = ( i ) ,
y yhzo ay yb:O

3
[Hu, Hols = < “““v0> R (3.13)
y’=0

ay°

Accordingly, as in[18], we get the following expressions of the geometric data that
define the Dirac structuré(s, vS)

d 0A% 9
H =spam X, = — Ly — , 3.14
panf 2, =+ S} 314
00ty
o(Xy, Xy) = ayu(x, 0) — ( ) n“, (3.15)
By“ b—0
y =
aBab
L% = ( ) n°, (3.16)
ay° ,
»=0

where () are fiber coordinates ors.

If we use the previous formulas a2l 15)we get a canonical, local basis of ty(&10)
for L(S, vS) namely,

d 0A% 0 oo,
it i) | (w0 (G )e) ] )
X ay an yh=0 dy yP=0

B 3 dA?
—— N , [dn“ — o dx“} : (3.17)
ay on =0 ay yb=0

From (3.17) we see tha$, seen as the zero sectiomdf endowed with the 2-forna, is
a presymplectic leaf of (S, vS). Moreover, we see that the structut€s, vS) alongs is a
linear approximation of the Dirac structuré. alongs.
For a Poisson structur® Vorobjev proved that the Poisson structut€s, vS) defined
by different normal bundlesS are equivalent in neighborhoods ${20,18] We will see
below why his proof does not apply in the general Dirac case, and indicate a particular case
where it works.
The choice of the normal bundies is equivalent with the definition of a projection
epimorphism/T : TsM — TS (IT? = IT) namely,vS = ker I1. A second normal bundle
V'S corresponds to a second epimorphigth: TsM — TS, and IT; = (1 — t)IT + ¢IT',




1. Vaisman / Journal of Geometry and Physics 56 (2006) 917-938 931

t € R, defines a homotopy between the normal bundlg&s = 0) andv'S(r = 1) by a
family of normal bundles;S.
Furthermore, there exists a bundle isomorph&m vS — V'S defined by

O1(Y)=Y —IT'(Y), Y €vs.
Similarly, we have isomorphisms
@, =1P1 — (L—1)ld. 1 vS — v;S.

On eachy, S we have a Dirac structueg (S, v,S), and we may pullback all these structures
tovS by ®; 1.

OnG* seen as the fixed normal bundlg, this exactly provides the homotopy considered
by Vorobjev[20,18]between the Dirac structurégs, y), (qﬁIl)*(/:(S, v")), wherey, y’ are
the splittings of the exact sequen@3) associated withvS, v'S by (3.8). Indeed, formula
(3.8)implies that theG-valued difference forng = ' — y is given by

#(X) = ((X)w) o [T' € annTS (X € TS), (3.18)

and, if we write the same form fd¥, instead offT’ we get the form.
In the Poisson case, Vorobjev’s proof is based on the 1-form

Uy(X) = ($(X), Y) = o(X, [T'Y), Y evS=G* XeTs, (3.19)

defined on the total space of the bundl® whereX’ is the horizontal lift ofX by the
connectior(3.4). The horizontal, time dependent, tangent vector figldf vS that satisfies
the conditionb,, 8, = —¢ has a flow which, at time 1, yields the required equivalence
[20,18]

In the general Dirac case, the fornexists but, the vector fiel&, may not exist since
the formo; is no more non-degenerate.

Let us refer to the particular case of a Dirac structlrguch that the field of planes
K = L N TM has a constant dimensid@n SinceL is closed by the Courant brackét,is
involutive, therefore, tangent to a foliatid®, the leaves of which are submanifolds of the
presymplectic leaves @f A Dirac structure with the previous property will be calledally
reducible, because if the stronger property that the leaves afe the fibers of a fibration
holds the Dirac structure igducible [13]. For a locally reducible Dirac structure the local
coordinatesx") used to get the canonical baseg.gfiven by(3.10)may be taken under the
form (x¢,z°) (s=1,...,k, e=1,...,dimS — k), wherex® = const define the leaves of
K and ¢*) are coordinates along these leaves.

Proposition 3.3. Let L be alocally reducible Dirac structure,x € M and S the presymplectic
leaf through x. Then, there exists a neighborhood of x where L has local bases of the form

9 ) d
ZS = 770 ) e = P Ab ) ap o Ye ) dxf ’
(8Zs ) H ( € + e(x y) By” o f(x y) )

0

Vo= (B“b(x, y)ay—b, dy’ — A%(x, y) dxf> , (3.20)
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the coefficients A, Bvanish at y* = 0and a.¢(x, 0) are the local components of the presym-
plectic 2-form w of S.

Proof. By the definition ofK and of the local coordinates that we usg,c L and must be
g-orthogonal to the vectors of the bag8s10) This happens if3.10)are of the forn(3.20),
where, a priori, the remaining coefficients may depend on all the coordinates]. But,
sinceL is closed by Courant bracketsZ{, #.], [ Zs, V] must beg-orthogonal toZ, H,
and this implies

dae _ 04 _ ¢ ;e

, , O
0z* az* 0z%

Now, it is easy to prove the following proposition.

Proposition 3.4. Let L be a reducible Dirac structure and S an embedded presymplectic
leaf of L. Then, the associated, normal Dirac structures defined by any two normal bundles
of S are equivalent.

Proof. If ¥ : M — M/K is the reducibility fibration, the vectof&,, V* of the canonical
basegq3.20)arey-projectable and their projections define a Poisson structuva M/

for which S/ is an embedded symplectic leaf. (This is a well known relgylt3]. The
structureA is Poisson because, Sh K = ker @, hence, the matrixr) of (3.20)has a
maximal rank.) Moreover, the projections of the vecttof (3.20)yield a normal bundle

of §/K € M/K and, because the computation of the Courant brackéts of* on M and

on M/K is the same, the associated, normal Dirac structuie @lbngS and that of the
projected Poisson structureof M/K alongS/K correspond each to the other tyIf we

act like that for two normal bundles 8f we get two associated, normal Poisson structures of
A, which are Poisson equivalent by Vorobjev’s theolf@® 18] This Poisson equivalence
lifts to an equivalence of the associated, normal Dirac structuteqdhe triples that define
the associated structures@rand onM/ K have the same local coordinate expressions with
respect to the bas¢3.20)and their projections.) [

4. Submanifolds of Dirac manifolds

In this section we will show that the almost-coupling and coupling conditions are also
significant for single submanifoldg? of a Dirac manifold 4", L) (a differentiable man-
ifold M with a fixed Dirac structuré), as opposed to a whole foliatigh For simplicity,
we will assume that the submanifold is embedded. Where possible, we will continue to use
the notation of the previous sections.

We begin by recalling that Dirac structures may be both pulled back and pushed forward
pointwisely (e.g., seft,2]). If ¢ : N — M is a differentiable mapping between arbitrary
manifolds andL (M) is a Dirac structure oM thenVvxinf N,

(" (L(M)))y = (Z, ")/ Z € TxM, a € T(;;(X)M, (s xZ, ) € L(M)g(x)} 4.1)

is @ maximal isotropic subspace BfN & T, N
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On the other hand, if we have a Dirac structdrgV) on N andx € N, we have the
maximal isotropic subspace

G LN o) = (G027, )/t € Ty M, (Z, 87) € L(N)}
S ToyM @ TjM. 42)

Generally, these pointwise operations do not yield differentiable subbundles. If differen-
tiable Dirac structure&(N), L(M) are related by4.1), ¢ is called abackward Dirac map,
and if the relation i$4.2) ¢ is aforward Dirac map [2]. If ¢ is the embedding: N? — M"
of a submanifold and if.(N) = *(L(M)) is differentiable,L (N) must be integrable, and
it defines a Dirac structure avi[4]. Indeed,L(N) is equivalent in the sense @f.11)with
the field of planes

L(N); . ={Z € T,N/3a € T*M(Z, ) € L(M)} = L(M)4 . N T,N
= To(S(L(M))) N TN (4.3)

(S denotes presymplectic leaves), endowed with the Z-EM) induced bya)i(M). Ob-

viously, if (4.3)is a differentiable distribution, it is integrable amﬁ(N) is closed. In what
follows, if the induced Dirac structure L(N) = (*(L) is differentiable, we will callN a
proper submanifold of (M, L).

Along the submanifoldv of (M, L), we have the field of planes

K(N) = Ker by, = L(N)NTN = {(Z,0)/Z € TN & 3a € annTN, (Z, a) € L}
= pryy (L N (TN @ annTN)), (4.4)

the kernel of the induced structuf€N). If L is defined by a Poisson bivector fieRle
V2(M), a proper submanifold with kernel zero has an induced strui{iv¢ provided by a
Poisson bivector fieldl € V2(N). Such submanifolds were studied[5] under the name
of Poisson—Dirac submanifolds.

On the other hand, if: N — M is a submanifold of , L) andvN is a normal bundle,
we may use the push forward constructi@n?) alongN and get a maximally isotropic
subbundle py L € TN @ T*N given by

pry L = {(pryy Z, pry« ya)/(Z, @) € Ly}, (4.5)

where the involved projections are those of the decomposfigf = vN & TN. Obvi-
ously, this subbundle is differentiable. A paiv,(vN) is called anormalized submanifold
[17], and, along it, one haglapted local coordinates of M like those that appear i{3.9).
In the present case, if prL of (4.5)is also integrable, it yields a Dirac structure and we
will say that (V, vN, pry L) is asubmersed submanifold of (M, L).

Now, like in Definition 2.1, we define

Definition 4.1. The pair (V, vN) is aproperly normalized submanifold of the Dirac manifold
(M, L) if

Liy =Ly ® L1n, (4.6)
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where

Lo =LNQON®VN), Lgy=LN(TN®T*N). (4.7)

Proposition 4.1. A properly normalized submanifold (N, vN) of a Dirac manifold (M, L)
is simultaneously proper and submersed and has the differentiable, Dirac structure

L(N) = *(L) = pry L, (4.8)

where the projection is defined by the decomposition TyM = vN @& TN.

Proof. Itis easy to understand that conditi@h6)is equivalent with

Accordingly, the pair defined byZ,6) € L in *(L) is the same as that defined by
(Z, pry+ y0) and may be identified with the latter. This justifies the equalit#8) and
proves the proposition. [J

Remark 4.1. If L = L(P), whereP is a Poisson bivector field, conditi¢A.6) reduces to
the almost-coupling condition of the Poisson case (see the beginning of S2cti¢1h8])
and the manifold is ®oisson—Dirac submanifold with a Dirac projection in the sense of

[5].

Furthermore, along any submanifaldof (M, L) we may define a field of subspaces
H.(L, N), x € N by formula(2.10)with condition«e € annF, changed tax € ann7, N.
This leads to a notion that corresponds to coupling namely,

Definition 4.2. The submanifoldV is a cosymplectic submanifold of the Dirac manifold
(M, L)if,Vx € N, TxM = H,(L, N) & T;N.

The reason for this name is thatiif = L(P) for a Poisson bivector fiel@ thenN is a
cosymplectic submanifold in the sense[22]. Obviously, now, all the results stated in
Proposition 2.2are true alongV. In particular,L|y has the expressiofR.15) (with F*
replaced byr'*N) and the induced structuie(N) is Poisson and defined by the bivector
field IT of (2.15)

In what follows, we define a restriction of the Courant brackef a6 a submanifold
t: N (M, L). Like for Poisson—Dirac submanifol@s], we may define

An(M, L) ={(X,a) € L|n/ X € TN}, (4.10)
which is important because, If4.1), we have
L(N)="(L) ={(X, *a) / (X, @) € An(M, L)}. (4.11)

Even though y (M, L) may not be a vector bundle, we will consider the real, linear space
I'Ay(M, L) of differentiable cross-sections dfy (M, L) (which may be zero). Using a
partition of unity that consists of a tubular neighborhoodvoind open sets that do not
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intersectV, it follows easily that any cross-sectiol,(«) € I'An(M, L) admits extensions
(X, @) € I'L. Accordingly, onl"A y(M, L) we may define a bracket

[(X, @), (Y. B)la = (((X, &), (¥, B)L)Iw- (4.12)

Proposition 4.2. The bracket (4.12) is well defined and, together with the projec-
tion p(X, «) = X, yields a structure of Herz—Reinhart Lie algebra over (R, C*°(N)) on
TAn(M, L).

Proof. In order to prove that the brackét.12) does not depend on the choice of the
extensions it suffices to prove thatit vanishesif, sgy8] = (0O, 0) (see the proof of Theorem
2.1 of[11]). If

. B =>_ (B ),
i=1
where @;, §,) is a local basis of. andi;|y = 0, and sinceX € V(N), we get
(X, &, (V. By =D _(l(X, &, (Bi, 0)]L)In + Y _(X%:)(Bi, 6:)ly = 0.

i=1 i=1

The last assertion of the proposition is obvious if we recall that a Herz—Reinhart Lie
(HRL) algebra (a pseudo-Lie algebra in the sendd 4f) R over R, C*°(N)) is areal Lie
algebra, which is @°°(N)-module endowed with a homomorphism R — V(N), such
that the properties of the algebra of global cross-sections of a Lie algebroid hald.

Furthermore, the mappin( «) — (X, t*«) defines a HRL-algebra morphism
#: TAy(M, L) — T'(L(N)) (L(N) = *(L)) (4.13)
and keri# = I"(L nannTN).

Proposition 4.3. If (N, vN) is a properly normalized submanifold of (M, L), Ax(M, L) is
a differentiable field of subspaces of the fibers of TN @ Ty M.

Proof. Forany X, «) € Ay(M, L), we may write

n
(X.@) =D xi(pryy Bi. Py 6) + (0. pryey @), (4.14)
i=1
where (B;, 6;) is a local basis of.|y. Hence, the local cross-sections 4f(M, L) are
spanned by differentiable cross-sectiond.]

As a consequence &froposition 4.3and of formula(4.11) in the case of a properly
normalized submanifold the morphisfhis surjective, and we have the following exact
sequence of HRL-algebras

0— I'(L nannTN) — I'An(M, L) — I'(L(N)) — O. (4.15)
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Along a properly normalized submanifol®/(vN), all the vector fields and differential
forms splitintoTN andvN-components, and we may identifif * N with the space of the
tangent components of 1-forms ifTy; M. Accordingly, we may write a decomposition
formula

(X, 2), (¥, w]a = [(X, 4), (Y. W]Lvy + (0, B((X, 1), (Y. 1)), (4.16)
wherei, u € prr y(TvM), B((X, 1), (¥, n)) € v*N andVZ € vN one has
B((X. 1), (Y, w)(2) = Z(M(Y)) — 2(Z, V]) + n((Z, X)), (4.17)

whereZ is an extension df to M. The result does not depend on the choice of the extension
7 becauseB((X, 1), (¥, n)) is a 1-form. By an analogy with Riemannian geometry to be
explained below, we caB the second fundamental form of (N, vN).

Let N be a Poisson—Dirac submanifold of the Poisson maniffld#), which is properly
normalized by the normal bundieVv and has the induced Poisson structiireThen, the
kernel conditionk (N) = 0 (see(4.4)) becomes

TN Ngp(annThN) = 0, (4.18)
or, by passing to the annihilator spaces,

annTN + Ay(M, P) = Ty M, (4.19)
where

AN(M, P) = (& € Ti;M/ttpE € TN} = annfp(@annTN)) ~ Ay(M, L(P)). (4.20)
Furthermore, the brackét.12)produces a bracket of 1-forms
{@, BYa = (& Blplv € TTyM (B € IT*N), (4.21)

where theP-bracket is that of the cotangent Lie algebroid #f,(P) and tilde denotes
extension ta\. Formula(4.16)becomes

{o, BYa = {a, Bl + Bl(a, B), (4.22)
where the second fundamental fomis given by
B(a, B)(Z) = —(L3P)In(a, B), Z = Z|y € TVN. (4.23)

Now, the Riemannian terminology used above is justified as follows. A Riemannian
metric g of the Poisson manifoldM, P) yields a canonicaRiemannian, contravariant
derivative DY [1]. This is a cotangent-Lie algebroid-connection®¥ which preserves
the metric and has no torsion i.e.,

(£rY)(g(e B) = 8(Df . B) + g(e. D] B). (4.24)
D{p — Dfa = (o, B} p, (4.25)

for all o, B, y € 2'M. This operator is provided by the usual algebraic trick that derives
the Riemannian connection from the metric, and the result is

2g(DLB. v) = (Bpa)(g(B. ) + (2pB)(g(¥. @) — (£p¥)(8(e. B)) + g({ev. B}p. ¥)
+8{v. alp, B) + g({y. Bl p, ). (4.26)
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Now, assume thaf\, vN = T-¢ N)is a properly normalized Poisson-Dirac submanifold
with the induced Poisson structufe ThenN has its own canonical operat®¥’ on T*N
and, also, a contravariant derivatizé>" defined by

DINB = (DEP)In. o pelT*N, (4.27)

whered, B are extensions af, 8. It follows easily from(4.26)that the result of4.27)does
not depend on the choice of the extension. The formula

DENE = DI+ w(a, ), ¥el ®TM, (4.28)

is aGauss-type equation andV is the gsecond fundamental form of N. But, (4.24)shows
that¥ is determined by the forr of (4.22) Namely, we get

—28(¥(a, B), v) = g(B(e, B), v) + g(B(y. @), B) + g(B(. B), ). (4.29)
The tensor field? is not symmetric and its skew-symmetric part igZ)JB.

Remark 4.2. For any normalized submanifoldv( vN) of any manifoldM, there exist
Riemannian metricg of M such thavN = T N. To get one, it suffices to define it along

N, then extend ta/ along an open covering that consists of a tubular neighborhoad of
and of sets that do not interse€tvia a partition of unity. Then, i is endowed with a
Poisson structurg, it follows easily that {, vN) is a properly normalized Poisson-Dirac
submanifold iffNV is invariant by® = tip o b. In particular, ifM is a Kahler manifold @ is

the complex structure tensor and the properly normalized Poisson—Dirac submanifolds are
the complex analytic submanifolds &f.

Proposition 4.4. A cosymplectic submanifold N of a Dirac manifold (M, L) has a vanishing
second fundamental form.

Proof. For a cosymplectic submanifold Corollary 2.1holds for7TN instead off' and, in
particular,L N annTN = 0. Then, by(4.9), (X, «) € Ay(M, L) implies (Q pr,« y) € L,
hence, we must have prya = 0. ThereforeA y(M, L) = L(N),* is an isomorphism, and
B=0. O

Definition 4.3. A submanifoldV of a Dirac manifold (£, L) which has a normal bundle
vN such that§, vN) is properly normalized and has a vanishing second fundamental form
will be called arotally Dirac submanifold.

In the Poisson case, these submanifolds were called [2&jcor Lie—Dirac[5]. We
took the termrotally from Riemannian geometry (totally geodesic submanifolds).
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