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Foliation-coupling Dirac structures
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Abstract

We extend the notion of “coupling with a foliation” from Poisson to Dirac structures and get the
corresponding generalization of the Vorobjev characterization of coupling Poisson structures [Yu.M.
Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, Lie algebroids and re-
lated topics in differential geometry, Banach Center Publ., Polish Acad. Sci. (Warsaw) 54 (2001) 249–
274; I. Vaisman, Coupling Poisson and Jacobi structures, Int. J. Geom. Meth. Mod. Phys. 1 (5) (2004)
607–637]. We show that any Dirac structure is coupling with the fibers of a tubular neighborhood of
an embedded presymplectic leaf, give new proofs of the results of Dufour and Wade [J.-P. Dufour, A.
Wade, On the local structure of Dirac manifolds. arXiv:math.SG/0405257] on the transversal Poisson
structure, and compute the Vorobjev structure of the total space of a normal bundle of the leaf. Finally,
we use the coupling condition along a submanifold, instead of a foliation, in order to discuss subman-
ifolds of a Dirac manifold which have differentiable, induced Dirac structures. In particular, we get
an invariant that reminds the second fundamental form of a submanifold of a Riemannian manifold.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, the functions, manifolds, bundles, etc. are assumed to be differentiable
of classC∞. The Dirac structures were first defined by Courant and Weinstein[3] and
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studied in Courant’s thesis[4]. Dirac structures are important because they provide a uni-
fied view of Poisson and presymplectic structures, and generalize both. Later, Dorfman
[8] extended the notion of a Dirac structure to complexes over Lie algebras. On the other
hand, the bracket used by Courant was extended by Liu et al.[12] to a notion of Courant
algebroid and the corresponding generalization of Dirac structures were introduced and
used in[13]. An extension of the original Courant bracket, which is not a Courant al-
gebroid bracket but includes the Jacobi structures in the scheme, was defined by Wade
[21].

For the reader’s convenience, we recall the general definitions of[12,13] in a slightly
different form. ACourant algebroid is a vector bundlep : C → M endowed with a non-
degenerate, pseudo-Euclidean metricg ∈ Γ �2 C (Γ denotes spaces of cross-sections and
� denotes symmetric tensor product), a morphismρ : C → TM (theanchor) and a skew-
symmetric bracket [, ]C : ΓC × ΓC → ΓC such that:

(i) ρ[c1, c2]C = [ρc1, ρc2]TM,
(ii)

∑
Cycl(1,2,3)[[c1, c2]C, c3]C = 1

3∂{
∑

Cycl(1,2,3) g([c1, c2]C, c3)},
(iii) ( ρc){g(c1, c2)} = g([c, c1]C + ∂g(c, c1), c2) + g(c1, [c, c2]C + ∂g(c, c2)), whereca ∈

ΓC (a = 1,2,3) and, iff ∈ C∞(M), ∂f = (1/2)�g ◦t ρ(df ) (‘t’ denotes transposition
and the “musical morphisms” are defined like in Riemannian geometry), equivalently,

g(c, ∂f ) = 1

2
(ρc)f. (1.1)

Further basic properties of Courant algebroids may be found, for example, in[16,19].
The most important Courant algebroids are the so-called doubles of Lie bialgebroids

[12,13]. We describe them by means of the notion of apara-Hermitian structure on a
pseudo-Euclidean bundle (C, g) (e.g.[6]) that is, a bundle morphismF : C → C such that

F2 = Id., g(Fc1, Fc2) = −g(c1, c2) (∀c1,2 ∈ ΓC). (1.2)

A para-Hermitian vector bundle (C, g, F ) decomposes asC = C+ ⊕ C−, where the compo-
nents are the (±1)-eigenspaces ofF, respectively, and the projections onto these components
are

F± = 1

2
(Id. ± F ). (1.3)

Moreover,C± are maximal isotropic with respect tog, the latter must beneutral (i.e., of
signature zero), and one has isomorphisms�g : C± → C∗∓ (the star denotes the dual bundle).
Furthermore, the bundle also has the non-degenerate 2-form

ω(c1, c2) = g(c1, Fc2), (ω(Fc1, Fc2) = −ω(c1, c2)), (1.4)

and the subbundlesC± areω-Lagrangian. All these facts apply to para-Hermitian vector
spaces, which is the case where the basisM is a point.

A Courant algebroid (C, g, ρ, [, ]C) will be calledpara-Hermitian if it is endowed with
a para-Hermitian structureF such that the subbundlesC± are closed with respect to the
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bracket [, ]C i.e.,∀c1, c2 ∈ ΓC, one has

F−[F+c1, F+c2]C = 0, F+[F−c1, F−c2]C = 0. (1.5)

Taking into account the expression ofF± and the propertyF2 = Id., we see that the two
conditions above are equivalent with the following single condition

[Fc1, Fc2]C − F [Fc1, c2]C − F [c1, Fc2]C + [c1, c2]C = 0, (1.6)

which will be called theintegrability condition of F, because this is the integrability condi-
tion of a para-Hermitian structure on the tangent bundle of a manifold.

Since the subbundlesC± areg-isotropic, the Courant algebroid axioms imply that the
vector bundle structure of a para-Hermitian Courant algebroid is that of a direct sum of two
dual Lie algebroids of anchorsρ ◦ F+, ρ ◦ F−. Moreover, the Lie algebroid brackets ofC±
together withF andg determine the Courant bracket ofC. Indeed, from(1.3) and (1.5), it
follows that

F+[c1, c2]C = [F+c1, F+c2]C + F+([F+c1, F−c2]C + [F−c1, F+c2]C),

F−[c1, c2]C = [F−c1, F−c2]C + F−([F+c1, F−c2]C + [F−c1, F+c2]C). (1.7)

Then, by writing down axiom (iii) of the definition of a Courant algebroid for triples
(F+c, F+c1, F−c2), (F−c2, F−c1, F+c), instead of (c, c1, c2), using(1.1)and conveniently
permuting (c, c1, c2), we get the formulas

g(F+c, [F+c1, F−c2]C) = g(F−c2, [F+c, F+c1]C) + (ρF+c1)(g(F+c, F−c2))

− 1

2
(ρF+c)(g(F+c1, F−c2)),

g(F−c, [F+c1, F−c2]C) = −g(F+c1, [F−c, F−c2]C) + (ρF−c2)(g(F−c, F+c1))

+ 1

2
(ρF−c)(g(F+c1, F−c2)). (1.8)

These formulas define the brackets [F+c1, F−c2]C, which, together with(1.7), proves the
previous assertion.

Accordingly, one can see that the notion of a para-Hermitian Courant algebroid is the
same as that of the double of a Lie bialgebroid[12].

An almost Dirac structure of the para-Hermitian Courant algebroidC is a maximal
g-isotropic subbundleL of C [13]. The isotropy property may be expressed by

g(F+l1, F−l2) + g(F−l1, F+l2) = 0 ∀l1, l2 ∈ ΓL. (1.9)

The algebraic properties of almost Dirac structures were discussed in[4]. Putp± = F±|L.
Then, kerp± = C∓ ∩ L, and we get the subbundles

L± = imp± ≈ L/C∓ ∩ L.

It is easy to see that ker(ω|L) = (C+ ∩ L) ⊕ (C− ∩ L), whereω is the 2-form(1.4). Hence,
the subbundlesL± have induced 2-formsωL± defined by

ωL+(F+l1, F+l2) = ωL−(F−l1, F−l2) = ω(l1, l2) = 2g(F−l1, F+l2)

= −2g(F+l1, F−l2), l1, l2 ∈ ΓL. (1.10)
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It is possible to reconstructL from each of the pairs (L±, ωL±). Namely, with(1.10)one
gets

L = {c/F+(c) ∈ L+, g(F−(c), u) = 1
2ω

L+(F+(c), u) ∀u ∈ L+},
L = {c/F−(c) ∈ L−, g(F+(c), v) = −1

2ω
L−(F−(c), v) ∀v ∈ L−}. (1.11)

In particular, ifL+ = C+, L is determined by the 2-formω+ on C+ and it may be
called analmost presymplectic structure. In this case, the first formula(1.11)shows thatL
may be identified with the graph of the mapping (1/2)�g ◦ �ω : C+ → C−. If L− = C−,
L is determined by the 2-formω− on C−, it may be called analmost Poisson structure
and it is the graph of the mapping−(1/2)�g ◦ �ω− : C− → C+. The conditionL+ = C+
is equivalent with the surjectivity ofp+, i.e., with kerp+ = C− ∩ L = {0}, and this latter
condition also characterizes the almost presymplectic case. Similarly, the almost Poisson
case is also characterized byC+ ∩ L = {0}.

Finally, aDirac structure is an almost Dirac structure which is closed with respect to
the bracket [, ]C. Equivalently,L ⊆ C is a Dirac structure if it is maximal isotropic and
∀la ∈ ΓL (a = 1,2,3) one has

g([l1, l2]C, l3) = 0. (1.12)

From the axioms of the Courant algebroids it follows that ifL is a Dirac structure then
(L, ρ|L, [, ]C) is a Lie algebroid.

In this paper, we will only be interested in the classical Courant case[4]. That isC =
TM ⊕ T ∗M with ρ(X,α) = X,

g((X,α), (Y, β)) = 1

2
(β(X) + α(Y )), F (X,α) = (X,−α), (1.13)

therefore,

ω((X,α), (Y, β)) = 1

2
(α(Y ) − β(X)), (1.14)

and with the bracket

[(X,α), (Y, β)] = ([X, Y ], LXβ − LYα+ d(ω((X,α), (Y, β))))

= ([X, Y ], i(X) dβ − i(Y ) dα+ 1
2 d(β(X) − α(Y ))). (1.15)

In the previous formulas,X, Y are vector fields andα, β are 1-forms on the differentiable
manifoldM, and the bracket of vector fields is the usual Lie bracket. Notice thatC+ = TM,
C− = T ∗M and the Courant bracket reduces to zero onT ∗M.

Then, a (almost) Dirac structure ofTM ⊕ T ∗M is called a (almost) Dirac structure on
the manifoldM. By the first formula(1.11), an almost Dirac structureL of M is determined
by a generalized distributionL+ ⊆ TM endowed with a 2-formωL+, namely:

L = {(X,α)/X ∈ L+ & α|L+ = �ωL+
X}. (1.16)

By a technical computation, it follows from(1.16) that L is a Dirac structure iffL+ is
integrable and the formωL+ is closed on the leaves ofL+ [4]. Accordingly, a Dirac struc-
ture onM is equivalent with a generalized foliation with presymplectic leaves where the
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presymplectic form depends differentiably of the leaves. If the leaves are symplectic we
have a Poisson structure, and if the leaves are the connected components ofM we have a
presymplectic structure (of a non-constant rank) onM.

Jacobi structures on a manifoldM may be seen as a particular case of Dirac structures
onM × R. Namely, a Jacobi structure onM is equivalent with aPoisson homogeneous
structure onM × R (e.g.[7]). We recall that the Poisson structure defined by the bivector
field P is homogeneous if there exists a vector fieldZ such thatP + LZP = 0. This is
equivalent with the fact that the Dirac structureL(P) = {(�Pθ, θ)/θ ∈ T ∗M} is such that
∀(X, θ) ∈ L(P) one has (X+ [Z,X], LZθ) ∈ L(P). The latter property may be attributed
to a general Dirac structureL, thus, producing the notion of a generalhomogeneous Dirac
structure. A more sophisticated way to see Jacobi structures as Dirac was proposed in[21].

Furthermore, we will be interested in the case where the manifoldM is also endowed
with a regular foliationF, and our aim is to extend the notion ofF-coupling from Poisson
structures to Dirac structures. Poisson structures coupling with a fibration were studied by
Vorobjev [20] then, extended to foliated manifolds in[18]. They proved to be important
in the study of the geometry of a Poisson structure in the neighborhood of an embedded
symplectic leaf[20]. In [9], Dufour and Wade study a Dirac structure in the neighborhood
of a presymplectic leaf and (in our terms) show that the structure is coupling with respect
to the fibers of a tubular neighborhood. In the present paper we will define the coupling
property of a Dirac structure with respect to an arbitrary foliation and extend Vorobjev’s
results. In particular, we will give geometric proofs of some of the results of[9].

Since this paper is a continuation of[18], and in order to avoid repetition, we will use
the same notation for everything related with the foliation. In particular, we assume that
dimM = n,dimF = p, q = n− p, and we denote byΩ∗(M),V∗(M) the spaces of differ-
ential forms and multivector fields onM. We will use a normal bundleH, i.e.,TM = H ⊕ F ,
F = TF, andT ∗M = H∗ ⊕ F∗ for the dual bundlesH∗ = annF,F∗ = annH (ann de-
notes the annihilator space). We will also use the corresponding bigrading of differential
forms and multivector fields and the induced decomposition

d = d′
1,0 + d′′

0,1 + ∂2,−1 (1.17)

of the exterior differential.

2. Coupling Dirac structures

Let (M,F) be a foliated manifold as described at the end of Section1. From[18], we
recall that a bivector fieldP ∈ V2(M) is F-almost coupling via the normal bundleH if
P = P ′

2,0 + P ′′
0,2, where the indices denote the bidegree, i.e.,P ′ ∈ Γ ∧2 H,P ′′ ∈ Γ ∧2 F .

In this case,P satisfies the Poisson condition [P,P ] = 0 iff the following four conditions
hold:

(L�P ′γP
′)(α, β) = d′γ(�P ′α, �P ′β), (L�P ′λP

′)(α, β) = −λ([�P ′α, �P ′β]),

(L�P ′γP
′′)(λ,µ) = 0, (L�P ′′νP

′)(λ,µ) = d′′ν(�P ′′λ, �P ′′µ), (2.1)

whereα, β, γ ∈ Ω1,0(M), λ, µ, ν ∈ Ω0,1(M).
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Accordingly, the generalization of the almost coupling condition has to ask for a decom-
position of the Dirac structure into anF-component and anH-component.

Definition 2.1. LetL ⊆ TM ⊕ T ∗M be a maximal isotropic subbundle. Denote

LH = L ∩ (H ⊕H∗), LF = L ∩ (F ⊕ F∗). (2.2)

Then, the almost Dirac structureL isF-almost coupling via H if

L = LH ⊕ LF . (2.3)

Therefore,L is almost coupling iff (Z, θ) ∈ L is equivalent with (X,α), (Y, λ) ∈ L,
whereZ = X+ Y, θ = α+ λ, X ∈ ΓH, Y ∈ ΓF, α ∈ ΓH∗, λ ∈ ΓF∗. Another important
observation that follows from(2.3) is that LH,LF are maximal isotropic inH ⊕
H∗, F ⊕ F∗, respectively, for the metrics induced byg of (1.13). It follows easily that
the bivector fieldP is F-almost coupling viaH iff the subbundleL(P) satisfies con-
dition (2.3). If L = L(τ) is an almost presymplectic structure defined by a 2-form
τ, almost coupling viaH holds iff τ = τ′2,0 + τ′′0,2, where, again, indices denote the
bidegree.

In the almost coupling situation, the integrability condition of a maximally isotropic
subbundleL ⊆ TM ⊕ T ∗M extends conditions(2.1).

Proposition 2.1. The F-almost coupling, almost Dirac structure L ⊆ TM ⊕ T ∗M
is a Dirac structure iff ∀(X,α) ∈ ΓLH∀(Y, λ) ∈ ΓLF , the following four conditions
hold: ∑

Cycl(1,2,3)

{X1(α2(X3)) + α1([X2, X3])} = 0,

(LYα2)(X1) + α1([Y,X2]) = λ([X1, X2]), (LXλ1)(Y2) + λ2([X, Y1]) = 0,

([Y1, Y2], i(Y1) d′′λ2 − i(Y2) d′′λ1 + d′′(λ2(Y1))) ∈ LF . (2.4)

Proof. SinceL is isotropic, by(1.9)∀(Za, θa) ∈ L (a = 1,2) we have

θ1(Z2) + θ2(Z1) = 0. (2.5)

Then, sinceF is involutive and using the decomposition(1.17), the second expression(1.15)
of the Courant bracket yields

[(X1, α1), (X2, α2)] = (prH [X1, X2], i(X1) d′α2 − i(X2) d′α1 + d′(α2(X1)))

+ (prF [X1, X2], i(X1) d′′α2 − i(X2) d′′α1 + d′′(α2(X1))),

(2.6)

[(X,α), (Y, λ)] = (prH [X, Y ], i(X)∂λ− i(Y ) d′′α) + (prF [X, Y ], i(X) d′λ), (2.7)

[(Y1, λ1), (Y2, λ2)] = (0, i(Y1) d′λ2 − i(Y2) d′λ1 + d′(λ2(Y1)))

+ ([Y1, Y2], i(Y1) d′′λ2 − i(Y2) d′′λ1 + d′′(λ2(Y1))), (2.8)
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where pr denotes natural projections and the terms areH ⊕H∗ andF ⊕ F∗ components,
respectively. In the almost coupling situation, integrability means that these components
always belong toLH,LF , respectively.

The second term of(2.8)yields the fourth condition(2.4). Since d′′ is exterior differen-
tiation along the leaves ofF, this condition is equivalent with the fact thatLF consists of
Dirac structures on the leaves ofF; we will say thatLF is a leaf-tangent Dirac structure
on (M,F).

By maximal isotropy, the (H ⊕H∗)-component of(2.8) belongs toLH iff ∀(X,α) ∈
ΓLH , the 1-form of the first term of the right-hand side of(2.8)vanishes onX. The result
of this evaluation exactly is the third condition(2.4).

The terms of the decompositions(2.7), (2.6)will be treated in a similar way, i.e., using
maximal isotropy and evaluations of exterior differentials. The computations show that the
condition provided by the (F ⊕ F∗)-component of(2.7) is again the third condition(2.4),
and the condition provided by the (H ⊕H∗)-component of(2.7) is the second condition
(2.4). Then, the condition provided by the (F ⊕ F∗)-component of(2.6)is again the second
condition(2.4), and the condition provided by the (H ⊕H∗)-component of(2.6)is the first
condition(2.4). �

Remark 2.1. With a few computations, one can see that the Poisson conditions(2.1) for
an almost coupling bivector field are exactly the Dirac conditions(2.4) for the subbundle
L(P), and in the same order. If only the componentLF is of the almost Poisson type, i.e.,
the graph of a bivector fieldΠ ∈ Γ ∧2 F , the last formula(2.4) means thatΠ must be a
leaf-tangent Poisson structure ofF [18] and, by puttingYa = �Πλa (a = 1,2) in the third
formula(2.4), the latter becomes

(LXΠ)(λ1, λ2) = 0. (2.9)

Now, on a foliated manifold (M,F), a bivector fieldP is F-coupling if �P (annF ) is a
normal bundle of the foliationF. In order to extend this notion, with any maximal isotropic
subbundleL ⊆ TM ⊕ T ∗M, we associate the possibly non-differentiable, generalized dis-
tribution of M defined by

Hx(L,F) = {Z ∈ TxM/∃α ∈ annFx & (Z, α) ∈ L} (x ∈ M). (2.10)

Then, state the following definition.

Definition 2.2. The almost Dirac structureL isF-coupling if the distributionH = H(L,F)
is normal to the foliationF at each pointx ∈ M.

Examples of coupling (integrable) Dirac structures will be shown in the next section. In
particular, we will see that, for any Dirac structureL and any embedded presymplectic leaf
S of L, there exists a tubular neighborhoodU of S such thatL is coupling with the tubular
fibers onU.

Proposition 2.2. If the subbundle L isF-coupling ∀x ∈ M,Lx isF-almost coupling at x via
Hx = Hx(L,F). Furthermore, the (H ⊕H∗)-component of Lx is the graph of a mapping
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�σx : Hx → H∗
x defined by some σx ∈ ∧2(annFx), and the (F ⊕ F∗)-component ofLx is the

graph of a mapping �Πx : F∗
x → Fx defined by someΠx ∈ ∧2Fx. Moreover,H = H(L,F)

is a differentiable, normal bundle of F such that L is F-almost coupling via H, and the
global cross-sections σ ∈ Γ ∧2 (annF ),Π ∈ Γ ∧2 F are differentiable.

Proof. The following considerations are at a fixed pointx ∈ M, which we do not include
in the notation. WithH = H(L,F) as the normal space ofF at x, take (Z, θ) ∈ L and
decomposeZ = X+ Y ,X ∈ H, Y ∈ F . By the definition ofH, ∃α ∈ H∗ such that (X,α) ∈
L, and we get a decomposition

(Z, λ) = (X,α) + (Y, θ − α), (2.11)

where the terms belong toL. Then,∀X′ ∈ H with a corresponding covectorα′ such that
(X′, α′) ∈ L, (2.5) implies

(θ − α)(X′) = −α′(Y ) = 0.

Henceθ − α ∈ F∗ and(2.11)implies the almost coupling property(2.3)at x.
Furthermore, if (X,α), (X,α′) ∈ L, whereα, α′ ∈ H∗, we get (0, α′ − α) ∈ L and the

isotropy ofL together with the coupling hypothesis implyα′ = α. Therefore,∀X ∈ H , the
covectorα ∈ annF such that (X,α) ∈ L is unique andLH is the graph of a morphism�σ ,
σ ∈ ∧2H∗. Notice also that the uniqueness ofα is equivalent with

L ∩ annF = {0}. (2.12)

On the other hand, the definition ofH impliesL ∩ F ⊆ H , therefore, in the coupling case,
L ∩ F = {0} and (see Section1) LF must be of the almost Poisson type, whence the
existence ofΠ.

Finally, we will prove the differentiability of the distributionH(L,F). For this purpose,
let us consider the subspaces

H̃(L,F) = {(Z, α) ∈ L/α ∈ annF } = L ∩ [TM ⊕ (annF )] (2.13)

at each point ofM. Then, kerp+|H̃(L,F) = L ∩ annF and

H(L,F) = p+(H̃(L,F)) ≈ H̃(L,F)/(L ∩ annF ). (2.14)

In the coupling case, because of(2.12), p+|H̃(L,F) is an isomorphism and we are done if
we prove the differentiability ofH̃(L,F). In a neighborhood of a pointx, let {αa}, {λu}
and{(Zi, θi = θiaα

a + θiuλ
u)} be differentiable, local bases ofH∗, F∗ andL, respectively.

Then,

H̃(L,F) = {(ξiZi, ξiθi)/θiuξi = 0}

(here and in the whole paper we use the Einstein summation convention), and we see that
H̃(L,F) is locally generated by fundamental solutions of a linear, homogeneous system of
equations with differentiable coefficients. But, if the rank of the latter is constant (and under
the coupling hypothesis the rank isn− q), differentiable, fundamental solutions exist. Of
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course, the differentiability ofH also implies the differentiability of the 2-formσ and of the
bivector fieldΠ. �

Hereafter, in the coupling situation we will use onlyH(L,F) as the normal bundle and
shortly denote it byH. The coupling situation is interesting precisely because it provides a
canonical normal bundle ofF.

Proposition 2.3. An F-coupling, almost Dirac structure L ⊆ TM ⊕ T ∗M is equivalent
with a triple (H, σ,Π), where H is a normal bundle of the foliation F, σ ∈ Γ ∧2 (annF )
and Π ∈ Γ ∧2 F .

Proof. We have already derived the triple from the subbundleL. Such a triple is called a
system ofgeometric data [20,9]. Conversely, if the geometric data are given, we reconstruct
L = LH ⊕ LF by definingLH as the graph of�σ andLF as the graph of�Π . In other words,
we have

L = {(X, �σX) + (�Πλ, λ)/X ∈ H, λ ∈ F∗}. � (2.15)

Corollary 2.1. On (M,F), the almost Dirac structure L is F-coupling iff

L ∩ (F ⊕ annF ) = {0}. (2.16)

Proof. Condition(2.16)is an immediate consequence of(2.15). Conversely,(2.16)implies
H ∩ F = {0} andH ≈ H̃ . On the other hand, by looking at dimensions,(2.16)also implies

L⊕ (F ⊕ annF ) = TM ⊕ T ∗M, (2.17)

therefore,

L+ (TM ⊕ annF ) = TM ⊕ T ∗M,

and from(2.13)we get dimH = dimH̃ = q. �

Remark 2.2. In the integrable case, formula(2.17)shows a new structure of para-Hermitian
Courant algebroid onTM ⊕ T ∗M, the double of a Lie bialgebroid (L,F ⊕ annF ).

Remark 2.3. An almost Poisson structureL(P) defined by the bivector fieldP is coupling
iff there exists a normal bundleH of the foliationF that yieldsP = P ′

2,0 + P ′′
0,2, whereP ′

is non-degenerate[20]. In the case of an almost presymplectic structureL(τ) defined by a
2-formτ,H(L(τ),F) is theτ-orthogonal distribution ofF and the coupling condition holds
iff the former is a complementary distribution of the latter. Equivalently,L(τ) isF-coupling
iff there exists a normal bundleH that yields a decomposition

τ = τ′2,0 + τ′′0,2, (2.18)

whereτ′′ is non-degenerate.

Remark 2.4. One can also define the notion of anF-coupling Dirac structure in a dual way.
Namely, for any almost Dirac structureL ⊆ TM ⊕ T ∗M of the foliated manifold (M,F),
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we may define thegeneralized codistribution (a field of subspaces of the fibers ofT ∗M
with a varying dimension)

K∗
x = K∗

x(L,F) = {θ ∈ T ∗
x M/∃Y ∈ Fx & (Y, θ) ∈ Lx} (x ∈ M). (2.19)

K∗ may not be differentiable, i.e., it may not have local generators defined by differentiable
1-forms. Then, it follows thatL isF-coupling iff

T ∗M = (annF ) ⊕K∗. (2.20)

Indeed, by dualizing the proof ofProposition 2.2, we see that condition(2.20)also obliges
L to be of the form(2.15). Notice also that, in the coupling case, the decomposition(2.20)
is the dual ofTM = H ⊕ F for H given by(2.10).

The integrability conditions of a coupling Dirac structure may also be expressed by
means of the associated geometric data like in the Poisson case[20,18].

Proposition 2.4. An F-coupling almost Dirac structure L ⊆ TM ⊕ T ∗M of a foliated
manifold (M,F) is a Dirac structure iff its associated geometric data (H, σ,Π) satisfy the
following conditions:

(i) Π is a leaf-tangent Poisson structure on (M,F), i.e., its restriction to each leaf is a
Poisson structure of the leaf;

(ii) d′σ = 0, equivalently, dσ(X1, X2, X3) = 0,∀X1, X2, X3 ∈ ΓH ;
(iii) for any projectable (to the space of leaves of F) vector fields X1, X2 ∈ ΓprH (pr

denotes projectability) one has

prF [X1, X2] = �Π (d′′(σ(X1, X2)));

(iv) for any projectable vector field X ∈ ΓprH one has LXΠ = 0.

Proof. Condition (i) is the equivalent of the fourth formula(2.4)if LF = L(Π) is the graph
ofΠ. In the coupling case, if we putαa = �σXa (a = 1,2,3) in the first formula(2.4), we
get condition (ii). The similar replacement of the formsα in the second formula(2.4)puts
the latter into the form

(LYσ)(X1, X2) = −λ([X1, X2]), ∀Y = �Πλ,∀λ ∈ F∗,∀X1, X2 ∈ ΓH. (2.21)

Since this condition is invariant by multiplication of the argumentsX by anyf ∈ C∞(M), it
suffices to ask(2.21)for projectable arguments. But,X ∈ ΓprH iff [ Y,X] ∈ ΓF , ∀Y ∈ ΓF
[15], and we see that(2.21)is equivalent with

(�Πλ)(σ(X1, X2)) = −λ([X1, X2]),

which exactly is condition (iii) of the proposition. Similarly, it suffices to use a pro-
jectable argumentX in the third formula(2.4). Then, the third formula(2.4) becomes
([X, �Πλ], LXλ) ∈ ΓL(Π), which is equivalent with condition (iv). �

Remark 2.5. Conditions (i)–(iv) ofProposition 2.4are the same as Vorobjev’s conditions
[20,18] of the Poisson case, except for the fact that the 2-formσ may degenerate. In[9]
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these conditions were included by definition. In the presymplectic case, where the structure
is defined by the closed 2-formτ of (2.18)with a non-degenerate componentτ′′, condition
(i) means thatτ′′ defines symplectic structures on the leaves ofF, and conditions (ii)–(iv)
become

d′τ′ = 0, d′′(τ′(X1, X2)) = �τ′′ (prF [X1, X2]), LXτ
′′ = 0 (2.22)

∀X,X1, X2 ∈ ΓprH . It is easy to see that these conditions are equivalent with

d′′τ′′ = 0, d′τ′ = 0, d′′τ′ + ∂τ′′ = 0, d′τ′′ = 0, (2.23)

which are the homogeneous components of dτ = 0.

3. Dirac structures near a presymplectic leaf

We continue to use the notation of the previous sections. A presymplectic leaf of a Dirac
structureL of a differentiable manifoldM is an integral submanifold of the distributionL+
defined in Section1. In [9], it was proven that, in a tubular neighborhood of an embedded
presymplectic leaf, any Dirac structureL is coupling with respect to the fibers of the tubular
structure. This result, which extends the similar one in Poisson geometry[20], describes
the geometry of a Dirac structure near an embedded presymplectic leaf. Below, we give an
invariant proof of this result.

Proposition 3.1. Let L be a Dirac structure on the foliated manifold (M,F). Assume
that L has a presymplectic leaf S such that TSM = TS ⊕ F |S . Then, there exists an open
neighborhood U of S in M such that L|U is coupling with respect to F ∩ U.

Proof. We will refer to bidegrees defined by the decompositionTSM = TS ⊕ F |N , where
we know thatTS = L+S . Then, for allX ∈ TS, there exists a covectorα ∈ T ∗S of bidegree
(1,0) equal to�ωL+X onTS, and(1.16)shows that (X,α) ∈ L. The conclusion is thatL|S is
the presymplectic structure ofS andH(L,F)|S = TS, therefore,L is F-coupling alongS.
By Corollary 2.1, this is equivalent with

[L+ (F ⊕ annF )]S = TSM ⊕ T ∗
SM, (3.1)

and, since its left hand side is differentiable,(3.1) also holds on an open neighborhoodU
of S. �

Corollary 3.1 (Dufour–Wade[9]). Assume that the Dirac structure L of a manifold M has
an embedded leaf S. Then, on a sufficiently small tubular neighborhood U of S, with the
foliationF defined by the fibers of the tubular structure, L may be put under the form (2.15),
where (H, σ ∈ Γ ∧2 (annF ),Π ∈ Γ ∧2 F ) is a triple of geometric data that satisfies the
integrability conditions (i) − −(iv) of Proposition 2.4, and Π is a Poisson structure which
vanishes on S.

Remark 3.1 (Dufour–Wade[9]). The previous corollary implies the fact that all the presym-
plectic leaves of a Dirac structure have the same parity. Indeed, with the notation of the



928 I. Vaisman / Journal of Geometry and Physics 56 (2006) 917–938

corollary, at a point nearS, L+ is a direct sum of a subspace of dimension dimS and a
subspace tangent to a symplectic leaf ofΠ, which has an even dimension.

Following [9], we say thatΠ is the transversal Poisson structure of the leafS. The
following proposition shows that the transversal structure is essentially unique.

Proposition 3.2 (Dufour–Wade[9]). The transverse Poisson structure of an embedded
presymplectic leaf of a Dirac structure is unique up to Poisson equivalence.

Proof. We get two transversal structuresΠ1,Π2 if we use two tubular neighborhoods
U1, U2. The isotopy of the latter[10] yields a leaf-preserving diffeomorphismΦ : U1 → U2,
which may be seen as the composition of maps in the flows of projectable vector fieldsX
on U1. But, (2.9) implies LXΠ = 0 for all the projectable vector fields. Hence, by the
integrability condition (iv) ofProposition 2.4, Φ∗Π1 = Π2 (after shrinking the tubular
neighborhoods if necessary).�

In what follows we consider the Vorobjev–Poisson structure[20,18] in the case of an
embedded, presymplectic leafS of a Dirac structureL.

From the general result on Lie algebroids given by Theorem 2.1 of[11], it follows that
the vector bundleL|S has a well defined induced structure of a transitive Lie algebroid over
S with the anchor and bracket defined by

ρ(X, θ) = X,

[(X1, θ1), (X2, θ2)]S = ([X̃1, X̃2], LX̃1
θ̃2 − LX̃2

θ̃1 − d(θ̃2(X̃1)))|S, (3.2)

where all the pairs (X, θ) belong toL|S and (X̃, θ̃) are arbitrary extensions of (X, θ) from
S to M. The existence of such extensions follows from the fact thatS is an embedded
submanifold, and the independence of the bracket(3.2) of the choice of the extensions
follows easily if the extensions are expressed via a local basis ofL and the axioms of a Lie
algebroid are used[11].

Accordingly,G = ker ρ is a bundle of Lie algebras such that

0 → G
⊆→L|S ρ→ TS → 0 (3.3)

is an exact sequence with projectionsp ontoS, while S is endowed with the presymplectic
(closed) 2-form� = ωL+.

As in [20,18], each splittingγ : TS → L|S produces geometric data (H, σ,L) on the
total space of the dual bundleG∗ with the foliation by fibersV. Namely:

(i) H is the horizontal bundle of the dual of the connection defined onG by the formula

∇Xη = [γ(X), η]S, X ∈ ΓTS, η ∈ ΓG, (3.4)

(ii) σ is the 2-form evaluated, atz ∈ G∗, on horizontal liftsX1,X2 of X1, X2 ∈ ΓTS, by

σz(X1,X2) = �p(z)(X1, X2) − z([γ(X1), γ(X2)] − γ[X1, X2]), (3.5)

(iii) L is the family of Lie–Poisson structures of the fibers ofG∗.
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The only difference between this situation and that of Vorobjev[20] is that� may
degenerate. But, the arguments and computations of Vorobjev’s case, as described in[18]
are still valid, and they show that the triple (H, σ,L) satisfies the integrability conditions
i)-iv) of Proposition 2.4. Therefore, there exists a corresponding coupling Dirac structure
L(S, γ) on the manifoldG∗, and we call it anassociated Dirac structure of L along S.

Let νS be a normal bundle of the leafS (TSM = νS ⊕ TS). Then, the reconstruction
formula(1.16)shows that

L|S = {(X, ��X+ λ)/X ∈ TS, λ ∈ ν∗S}, (3.6)

where��X is the 1-form defined by

(��X)(Z) =
{
�(X,Z), if Z ∈ TS,
0, if Z ∈ νS, (3.7)

and we have a splittingγ given by

γ(X) = (X, ��X). (3.8)

On the other hand,(3.6) shows that we may identify the bundleG∗ with νS. Namely,
we haveG = ν∗S = annTS, andΘ ∈ Hom(annTS,R) identifies withY ∈ νS defined by
λ(Y ) = Θ(λ) ∀λ ∈ annTS. We will say that the Dirac structure associated withL by the
splitting (3.8) is theassociated, normal Dirac structure L(S, νS).

We want to find a convenient local coordinate expression ofL(S, νS). For this purpose,
around the points ofS and after the choice of the normal bundleνS, we take local coordinates
(xu, ya), wherea (and similar indicesb, c) takes the values 1, . . . , codimS andu (and similar
indicesv,w) takes the values 1, . . . ,dimS, such thatS is locally defined by the equations
ya = 0 and

TS = span

{
∂

∂xu
|yb=0

}
, νS = span

{
∂

∂ya
|yb=0

}
, T ∗S = span{dxu|yb=0},

ν∗S = span{dya|yb=0}. (3.9)

Then, Theorem 3.2 of[9] tells us that the Dirac structureL has local bases of the form

Hu =
(
∂

∂xu
+ Abu(x, y)

∂

∂yb
, αuv(x, y) dxv

)
,

Va =
(
Bab(x, y)

∂

∂yb
, dya − Aav(x, y) dxv

)
, (3.10)

whereαuv(x,0) are the components of the 2-form� and

Abu(x,0) = 0, Bab(x,0) = 0. (3.11)

Remark 3.2. As a matter of fact the proof given in[9] holds to show that, for any maximal
isotropic subspaceL ⊆ W ⊕W∗ whereW is an arbitrary vector space, there are bases of
the form

(lu + Abufb, αuvλ
v), (Babfb, ϕ

a − Aavλ
v), (3.12)
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where (lu) is a basis ofL+, (fa) is a basis of an arbitrary complement ofL+, (λu) is the
dual basis of (lu) and (ϕa) is the dual basis of (fa).

It follows that the local basis of the Lie algebra bundleG ≈ ν∗S given in(3.9)may be
seen as (Va|yb=0) and the local basis ofγ(TS) is (Hu|yb=0). Using(3.11), which implies the
vanishing of the derivatives of the same functions with respect toxu onS, and the closedness
of the 2-form�, we get for the brackets of the elements of these bases the expressions

[V a,V b]S =
(
∂Bab

∂yc
V c
)
yb=0

, [Hu,V
a]S =

(
∂Aau

∂yc
V c
)
yb=0

,

[Hu,Hv]S =
(
∂αuv

∂yc
V c
)
yb=0

. (3.13)

Accordingly, as in[18], we get the following expressions of the geometric data that
define the Dirac structureL(S, νS)

H = span

{
Xu = ∂

∂xu
+ ∂Aau

∂yc
ηc

∂

∂ηa

}
yb=0

, (3.14)

σ(Xu,Xv) = αuv(x,0) −
(
∂αuv

∂ya

)
yb=0

ηa, (3.15)

L
ab =

(
∂Bab

∂yc

)
yb=0

ηc, (3.16)

where (ηa) are fiber coordinates onνS.
If we use the previous formulas and(2.15)we get a canonical, local basis of type(3.10)

for L(S, νS) namely,([
∂

∂xu
+ ∂Aau

∂yc
ηc

∂

∂ηa

]
yb=0

,

[(
αuv(x,0) −

(
∂αuv

∂ya

)
ηa
)

dxv
]
yb=0

)
,


[∂Bab

∂yc
ηc

∂

∂ηb

]
yb=0

,

[
dηa − ∂Aau

∂yc
ηc dxu

]
yb=0


 . (3.17)

From(3.17), we see thatS, seen as the zero section ofνS endowed with the 2-form�, is
a presymplectic leaf ofL(S, νS). Moreover, we see that the structureL(S, νS) alongS is a
linear approximation of the Dirac structureL alongS.

For a Poisson structureP, Vorobjev proved that the Poisson structuresL(S, νS) defined
by different normal bundlesνS are equivalent in neighborhoods ofS [20,18]. We will see
below why his proof does not apply in the general Dirac case, and indicate a particular case
where it works.

The choice of the normal bundleνS is equivalent with the definition of a projection
epimorphismΠ : TSM → TS (Π2 = Π) namely,νS = ker Π. A second normal bundle
ν′S corresponds to a second epimorphismΠ ′ : TSM → TS, andΠt = (1 − t)Π + tΠ ′,
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t ∈ R, defines a homotopy between the normal bundlesνS(t = 0) andν′S(t = 1) by a
family of normal bundlesνtS.

Furthermore, there exists a bundle isomorphismΦ1 : νS → ν′S defined by

Φ1(Y ) = Y −Π ′(Y ), Y ∈ νS.

Similarly, we have isomorphisms

Φt = tΦ1 − (1 − t)Id. : νS → νtS.

On eachνtS we have a Dirac structureLt(S, νtS), and we may pullback all these structures
to νS byΦ−1

t .
OnG∗ seen as the fixed normal bundleνS, this exactly provides the homotopy considered

by Vorobjev[20,18]between the Dirac structuresL(S, γ), (Φ−1
1 )∗(L(S, γ ′)), whereγ, γ ′ are

the splittings of the exact sequence(3.3)associated withνS, ν′S by (3.8). Indeed, formula
(3.8) implies that theG-valued difference formφ = γ ′ − γ is given by

φ(X) = (i(X)�) ◦Π ′ ∈ annTS (X ∈ TS), (3.18)

and, if we write the same form forΠt instead ofΠ ′ we get the formtφ.
In the Poisson case, Vorobjev’s proof is based on the 1-form

ψY (X) = 〈φ(X), Y〉 = �(X,Π ′Y ), Y ∈ νS = G∗, X ∈ TS, (3.19)

defined on the total space of the bundleνS, whereX is the horizontal lift ofX by the
connection(3.4). The horizontal, time dependent, tangent vector field�t of νS that satisfies
the condition�σt�t = −ψ has a flow which, at time 1, yields the required equivalence
[20,18].

In the general Dirac case, the formψ exists but, the vector field�t may not exist since
the formσt is no more non-degenerate.

Let us refer to the particular case of a Dirac structureL such that the field of planes
K = L ∩ TM has a constant dimensionk. SinceL is closed by the Courant bracket,K is
involutive, therefore, tangent to a foliationK, the leaves of which are submanifolds of the
presymplectic leaves ofL. A Dirac structure with the previous property will be calledlocally
reducible, because if the stronger property that the leaves ofK are the fibers of a fibration
holds the Dirac structure isreducible [13]. For a locally reducible Dirac structure the local
coordinates (xu) used to get the canonical bases ofL given by(3.10)may be taken under the
form (xe, zs) (s = 1, . . . , k, e = 1, . . . ,dimS − k), wherexe = const. define the leaves of
K and (zs) are coordinates along these leaves.

Proposition 3.3. Let L be a locally reducible Dirac structure,x ∈ M and S the presymplectic
leaf through x. Then, there exists a neighborhood of x where L has local bases of the form

Zs =
(
∂

∂zs
,0

)
, He =

(
∂

∂xe
+ Abe(x, y)

∂

∂yb
, αef (x, y) dxf

)
,

Va =
(
Bab(x, y)

∂

∂yb
,dya − Aaf (x, y) dxf

)
, (3.20)
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the coefficientsA,B vanish at ya = 0 and αef (x,0) are the local components of the presym-
plectic 2-form � of S.

Proof. By the definition ofK and of the local coordinates that we use,Zs ∈ L and must be
g-orthogonal to the vectors of the basis(3.10). This happens iff(3.10)are of the form(3.20),
where, a priori, the remaining coefficients may depend on all the coordinates (x, y, z). But,
sinceL is closed by Courant brackets, [Zs,He], [Zs,Va] must beg-orthogonal toZs,He
and this implies

∂αef

∂zs
= 0,

∂Abe

∂zs
= 0,

∂Bab

∂zs
= 0. �

Now, it is easy to prove the following proposition.

Proposition 3.4. Let L be a reducible Dirac structure and S an embedded presymplectic
leaf of L. Then, the associated, normal Dirac structures defined by any two normal bundles
of S are equivalent.

Proof. If ψ : M → M/K is the reducibility fibration, the vectorsHe,Va of the canonical
bases(3.20)areψ-projectable and their projections define a Poisson structureΛ onM/K
for which S/K is an embedded symplectic leaf. (This is a well known result[4,13]. The
structureΛ is Poisson because, onS, K = ker �, hence, the matrix (αef ) of (3.20)has a
maximal rank.) Moreover, the projections of the vectorsVa of (3.20)yield a normal bundle
of S/K ⊆ M/K and, because the computation of the Courant brackets ofHe,V

a onM and
onM/K is the same, the associated, normal Dirac structure ofL alongS and that of the
projected Poisson structureΛ ofM/K alongS/K correspond each to the other byψ. If we
act like that for two normal bundles ofS, we get two associated, normal Poisson structures of
Λ, which are Poisson equivalent by Vorobjev’s theorem[20,18]. This Poisson equivalence
lifts to an equivalence of the associated, normal Dirac structures ofL. (The triples that define
the associated structures onM and onM/K have the same local coordinate expressions with
respect to the bases(3.20)and their projections.) �

4. Submanifolds of Dirac manifolds

In this section we will show that the almost-coupling and coupling conditions are also
significant for single submanifoldsNp of a Dirac manifold (Mn,L) (a differentiable man-
ifold M with a fixed Dirac structureL), as opposed to a whole foliationF. For simplicity,
we will assume that the submanifold is embedded. Where possible, we will continue to use
the notation of the previous sections.

We begin by recalling that Dirac structures may be both pulled back and pushed forward
pointwisely (e.g., see[4,2]). If φ : N → M is a differentiable mapping between arbitrary
manifolds andL(M) is a Dirac structure onM then∀x inf N,

(φ∗(L(M)))x = {(Z, φ∗α)/Z ∈ TxM, α ∈ T ∗
φ(x)M, (φ∗,xZ, α) ∈ L(M)φ(x)} (4.1)

is a maximal isotropic subspace ofTxN ⊕ T ∗
x N
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On the other hand, if we have a Dirac structureL(N) on N andx ∈ N, we have the
maximal isotropic subspace

(φ∗(L(N)))φ(x) = {(φ∗,xZ, α)/α ∈ T ∗
φ(x)M, (Z, φ

∗
xα) ∈ L(N)x}

⊆ Tφ(x)M ⊕ T ∗
φ(x)M. (4.2)

Generally, these pointwise operations do not yield differentiable subbundles. If differen-
tiable Dirac structuresL(N), L(M) are related by(4.1), φ is called abackward Dirac map,
and if the relation is(4.2)φ is aforward Dirac map [2]. If φ is the embeddingι : Np ↪→ Mn

of a submanifold and ifL(N) = ι∗(L(M)) is differentiable,L(N) must be integrable, and
it defines a Dirac structure onN [4]. Indeed,L(N) is equivalent in the sense of(1.11)with
the field of planes

L(N)+,x = {Z ∈ TxN/∃α ∈ T ∗
x M(Z, α) ∈ L(M)x} = L(M)+,x ∩ TxN

= Tx(S(L(M))) ∩ TxN (4.3)

(S denotes presymplectic leaves), endowed with the 2-formω
L(N)
+ induced byωL(M)

+ . Ob-

viously, if (4.3) is a differentiable distribution, it is integrable andωL(N)
+ is closed. In what

follows, if the induced Dirac structure L(N) = ι∗(L) is differentiable, we will callN a
proper submanifold of (M,L).

Along the submanifoldN of (M,L), we have the field of planes

K(N) = ker �ωS(N) = L(N) ∩ TN = {(Z,0)/Z ∈ TN & ∃α ∈ annTN, (Z, α) ∈ L}
= prTN (L ∩ (TN ⊕ annTN)), (4.4)

the kernel of the induced structureL(N). If L is defined by a Poisson bivector fieldP ∈
V 2(M), a proper submanifold with kernel zero has an induced structureL(N) provided by a
Poisson bivector fieldΠ ∈ V 2(N). Such submanifolds were studied in[5] under the name
of Poisson–Dirac submanifolds.

On the other hand, ifι : N ↪→ M is a submanifold of (M,L) andνN is a normal bundle,
we may use the push forward construction(4.2) alongN and get a maximally isotropic
subbundle prN L ⊆ TN ⊕ T ∗N given by

prN L = {(prTN Z,prT ∗ Nα)/(Z, α) ∈ L|N}, (4.5)

where the involved projections are those of the decompositionTNM = νN ⊕ TN. Obvi-
ously, this subbundle is differentiable. A pair (N, νN) is called anormalized submanifold
[17], and, along it, one hasadapted local coordinates of M like those that appear in(3.9).
In the present case, if prN L of (4.5) is also integrable, it yields a Dirac structure and we
will say that (N, νN,prN L) is asubmersed submanifold of (M,L).

Now, like in Definition 2.1, we define

Definition 4.1. The pair (N, νN) is aproperly normalized submanifold of the Dirac manifold
(M,L) if

L|N = LνN ⊕ LTN, (4.6)
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where

LνN = L ∩ (νN ⊕ ν∗N), LTN = L ∩ (TN ⊕ T ∗N). (4.7)

Proposition 4.1. A properly normalized submanifold (N, νN) of a Dirac manifold (M,L)
is simultaneously proper and submersed and has the differentiable, Dirac structure

L(N) = ι∗(L) = prN L, (4.8)

where the projection is defined by the decomposition TNM = νN ⊕ TN.

Proof. It is easy to understand that condition(4.6) is equivalent with

(Z, θ) ∈ L|N ⇒ (prTN Z,prT ∗ Nθ) ∈ L|N. (4.9)

Accordingly, the pair defined by (Z, θ) ∈ L in ι∗(L) is the same as that defined by
(Z,prT ∗ Nθ) and may be identified with the latter. This justifies the equalities(4.8) and
proves the proposition. �

Remark 4.1. If L = L(P), whereP is a Poisson bivector field, condition(4.6)reduces to
the almost-coupling condition of the Poisson case (see the beginning of Section2 or [18])
and the manifold is aPoisson–Dirac submanifold with a Dirac projection in the sense of
[5].

Furthermore, along any submanifoldN of (M,L) we may define a field of subspaces
Hx(L,N), x ∈ N by formula(2.10)with conditionα ∈ annFx changed toα ∈ annTxN.
This leads to a notion that corresponds to coupling namely,

Definition 4.2. The submanifoldN is a cosymplectic submanifold of the Dirac manifold
(M,L) if, ∀x ∈ N, TxM = Hx(L,N) ⊕ TxN.

The reason for this name is that ifL = L(P) for a Poisson bivector fieldP thenN is a
cosymplectic submanifold in the sense of[22]. Obviously, now, all the results stated in
Proposition 2.2are true alongN. In particular,L|N has the expression(2.15) (with F∗
replaced byT ∗N) and the induced structureL(N) is Poisson and defined by the bivector
fieldΠ of (2.15).

In what follows, we define a restriction of the Courant bracket ofL to a submanifold
ι : N ↪→ (M,L). Like for Poisson–Dirac submanifolds[5], we may define

AN (M,L) = {(X,α) ∈ L|N /X ∈ TN}, (4.10)

which is important because, by(4.1), we have

L(N) = ι∗(L) = {(X, ι∗α) / (X,α) ∈ AN (M,L)}. (4.11)

Even thoughAN (M,L) may not be a vector bundle, we will consider the real, linear space
ΓAN (M,L) of differentiable cross-sections ofAN (M,L) (which may be zero). Using a
partition of unity that consists of a tubular neighborhood ofN and open sets that do not
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intersectN, it follows easily that any cross-section (X,α) ∈ ΓAN (M,L) admits extensions
(X̃, α̃) ∈ ΓL. Accordingly, onΓAN (M,L) we may define a bracket

[(X,α), (Y, β)]A = ([(X̃, α̃), (Ỹ , β̃)]L)|N. (4.12)

Proposition 4.2. The bracket (4.12) is well defined and, together with the projec-
tion ρ(X,α) = X, yields a structure of Herz–Reinhart Lie algebra over (R, C∞(N)) on
ΓAN (M,L).

Proof. In order to prove that the bracket(4.12) does not depend on the choice of the
extensions it suffices to prove that it vanishes if, say, (Y, β) = (0,0) (see the proof of Theorem
2.1 of [11]). If

(Ỹ , β̃) =
n∑
i=1

λ̃i(B̃i, θ̃i),

where (̃Bi, θ̃i) is a local basis ofL andλ̃i|N = 0, and sinceX ∈ V1(N), we get

([(X̃, α̃), (Ỹ , β̃)]L)|N =
n∑
i=1

(λ̃i[(X̃, α̃), (B̃i, θ̃i)]L)|N +
n∑
i=1

(Xλ̃i)(B̃i, θ̃i)|N = 0.

The last assertion of the proposition is obvious if we recall that a Herz–Reinhart Lie
(HRL) algebra (a pseudo-Lie algebra in the sense of[14])R over (R, C∞(N)) is a real Lie
algebra, which is aC∞(N)-module endowed with a homomorphismρ : R→ V1(N), such
that the properties of the algebra of global cross-sections of a Lie algebroid hold.�

Furthermore, the mapping (X,α) �→ (X, ι∗α) defines a HRL-algebra morphism

ι# : ΓAN (M,L) → Γ (L(N)) (L(N) = ι∗(L)) (4.13)

and kerι# = Γ (L ∩ annTN).

Proposition 4.3. If (N, νN) is a properly normalized submanifold of (M,L),AN (M,L) is
a differentiable field of subspaces of the fibers of TN ⊕ T ∗

NM.

Proof. For any (X,α) ∈ AN (M,L), we may write

(X,α) =
n∑
i=1

λi(prTN Bi,prT ∗N θi) + (0,prν∗N α), (4.14)

where (Bi, θi) is a local basis ofL|N . Hence, the local cross-sections ofAN (M,L) are
spanned by differentiable cross-sections.�

As a consequence ofProposition 4.3and of formula(4.11), in the case of a properly
normalized submanifold the morphismι# is surjective, and we have the following exact
sequence of HRL-algebras

0 → Γ (L ∩ annTN) → ΓAN (M,L) → Γ (L(N)) → 0. (4.15)
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Along a properly normalized submanifold (N, νN), all the vector fields and differential
forms split intoTN andνN-components, and we may identifyΓT ∗N with the space of the
tangent components of 1-forms inΓT ∗

NM. Accordingly, we may write a decomposition
formula

[(X, λ), (Y,µ)]A = [(X, λ), (Y,µ)]L(N) + (0, B((X, λ), (Y,µ))), (4.16)

whereλ,µ ∈ prT∗N (T ∗
NM), B((X, λ), (Y,µ)) ∈ ν∗N and∀Z ∈ νN one has

B((X, λ), (Y,µ))(Z) = Z(λ̃(Ỹ )) − λ([Z̃, Ỹ ]) + µ([Z̃, X̃]), (4.17)

whereZ̃ is an extension ofZ to M. The result does not depend on the choice of the extension
Z̃ becauseB((X, λ), (Y,µ)) is a 1-form. By an analogy with Riemannian geometry to be
explained below, we callB thesecond fundamental form of (N, νN).

LetN be a Poisson–Dirac submanifold of the Poisson manifold (M,P), which is properly
normalized by the normal bundleνN and has the induced Poisson structureΠ. Then, the
kernel conditionK(N) = 0 (see(4.4)) becomes

TN ∩ �P (annTN) = 0, (4.18)

or, by passing to the annihilator spaces,

annTN + AN (M,P) = T ∗
NM, (4.19)

where

AN (M,P) = {ξ ∈ T ∗
NM/�Pξ ∈ TN} = ann(�P (annTN)) ≈ AN (M,L(P)). (4.20)

Furthermore, the bracket(4.12)produces a bracket of 1-forms

{α, β}A = {α̃, β̃}P |N ∈ ΓT ∗
NM (α, β ∈ ΓT ∗N), (4.21)

where theP-bracket is that of the cotangent Lie algebroid of (M,P) and tilde denotes
extension toM. Formula(4.16)becomes

{α, β}A = {α, β}Π + B(α, β), (4.22)

where the second fundamental formB is given by

B(α, β)(Z) = −(LZ̃P)|N (α, β), Z = Z̃|N ∈ ΓνN. (4.23)

Now, the Riemannian terminology used above is justified as follows. A Riemannian
metric g of the Poisson manifold (M,P) yields a canonicalRiemannian, contravariant
derivative DP [1]. This is a cotangent-Lie algebroid-connection onTM which preserves
the metric and has no torsion i.e.,

(�Pγ)(g(α, β)) = g(DPγ α, β) + g(α,DPγ β), (4.24)

DPα β −DPβ α = {α, β}P, (4.25)

for all α, β, γ ∈ Ω1M. This operator is provided by the usual algebraic trick that derives
the Riemannian connection from the metric, and the result is

2g(DPα β, γ) = (�Pα)(g(β, γ)) + (�Pβ)(g(γ, α)) − (�Pγ)(g(α, β)) + g({α, β}P, γ)

+ g({γ, α}P, β) + g({γ, β}P, α). (4.26)
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Now, assume that (N, νN = T⊥gN) is a properly normalized Poisson–Dirac submanifold
with the induced Poisson structureΠ. ThenN has its own canonical operatorDΠ onT ∗N
and, also, a contravariant derivativeDP,N defined by

DP,Nα β = (DPα̃ β̃)|N, α, β ∈ ΓT ∗N, (4.27)

whereα̃, β̃ are extensions ofα, β. It follows easily from(4.26)that the result of(4.27)does
not depend on the choice of the extension. The formula

DP,Nα β = DΠα β + Ψ (α, β), Ψ ∈ Γ ⊗2 TM, (4.28)

is aGauss-type equation andΨ is the g-second fundamental form of N. But, (4.24)shows
thatΨ is determined by the formB of (4.22). Namely, we get

−2g(Ψ (α, β), γ) = g(B(α, β), γ) + g(B(γ, α), β) + g(B(γ, β), α). (4.29)

The tensor fieldΨ is not symmetric and its skew-symmetric part is (1/2)B.

Remark 4.2. For any normalized submanifold (N, νN) of any manifoldM, there exist
Riemannian metricsg of M such thatνN = T⊥gN. To get one, it suffices to define it along
N, then extend toM along an open covering that consists of a tubular neighborhood ofN
and of sets that do not intersectN via a partition of unity. Then, ifM is endowed with a
Poisson structureP, it follows easily that (N, νN) is a properly normalized Poisson–Dirac
submanifold iffN is invariant byΦ = �P ◦ �g. In particular, ifM is a Kähler manifold,Φ is
the complex structure tensor and the properly normalized Poisson–Dirac submanifolds are
the complex analytic submanifolds ofM.

Proposition 4.4. A cosymplectic submanifold N of a Dirac manifold (M,L) has a vanishing
second fundamental form.

Proof. For a cosymplectic submanifoldN, Corollary 2.1holds forTN instead ofF and, in
particular,L ∩ annTN = 0. Then, by(4.9), (X,α) ∈ AN (M,L) implies (0,prν∗ Nα) ∈ L,
hence, we must have prν∗ Nα = 0. Therefore,AN (M,L) = L(N), ι# is an isomorphism, and
B = 0. �

Definition 4.3. A submanifoldN of a Dirac manifold (M,L) which has a normal bundle
νN such that (N, νN) is properly normalized and has a vanishing second fundamental form
will be called atotally Dirac submanifold.

In the Poisson case, these submanifolds were called Dirac[23] or Lie–Dirac[5]. We
took the termtotally from Riemannian geometry (totally geodesic submanifolds).
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Birkhäuser, Boston, 2005, pp. 603–622.

[18] I. Vaisman, Coupling Poisson and Jacobi structures, Int. J. Geom. Meth. Mod. Phys. 1 5 (2004) 607–637.
[19] I. Vaisman, Transitive Courant algebroids. arXiv:math.DG/0407399.
[20] Yu.M. Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, Lie algebroids and

related topics in differential geometry, Banach Center Publ., Polish Acad. Sci. (Warsaw) 54 (2001) 249–274.
[21] A. Wade, Conformal Dirac structures, Lett. Math. Phys. 53 (2000) 331–348.
[22] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983) 523–557.
[23] P. Xu, Dirac submanifolds and Poisson involutions, Ann. Sci. Ec. Norm. Sup. 36 (2003) 403–430.


	Foliation-coupling Dirac structures
	Introduction
	Coupling Dirac structures
	Dirac structures near a presymplectic leaf
	Submanifolds of Dirac manifolds
	Acknowledgements
	References


